电气渗透组件中密封材料的应力监测

Fan Zhichun, L. Mingze, Chen Feng, Huang Zhiyong, Yan He
{"title":"电气渗透组件中密封材料的应力监测","authors":"Fan Zhichun, L. Mingze, Chen Feng, Huang Zhiyong, Yan He","doi":"10.1115/ICONE26-82165","DOIUrl":null,"url":null,"abstract":"Failure of sealing materials is a principal cause to the leakage of electrical penetration assemblies (EPA) in nuclear plants, and the essence can be attributed to small deformations or defects taking place in the sealing materials (glass, epoxy, etc.) as a result of harsh environment influence (high temperature, pressure and ionizing radiation), which leads to leakage when the stress/strain exceeds the threshold value. Metal-to-glass sealing EPA has unique advantages of higher temperature and pressure endurance than organic material sealing EPA, and has been applied in the pressure vessel of High-Temperature Reactor Pebble-bed Modules (HTR-PM) at the Shidao Bay Nuclear Power Plant in China. To achieve on-line state monitoring, we proposed a new method to monitor the stress in the sealing glass by optical fiber sensing technique. Our research showed that the stress in sealing glass could be measured via embedding an optical fiber Bragg grating (FBG) sensor in glass. Optical fiber sensing technique has been widely used for stress measurement in many fields, however applications in metal-to-glass sealing EPA have not been reported in the literature yet. Taking advantage of the small size of a fiber sensor, the embedding of fiber will not affect the sealing structure. And taking advantage of the similar chemical content, fiber and glass can be fused together easily without affecting insulation. In this paper, a brief review on applications of FBG in nuclear facilities was present. The model of FBG embedded EPA was built based on finite element method. Sensitivity analysis about the impact of environment parameters including temperature and pressure on stress had been studied numerically. And the theoretical Bragg wavelength shift of the embedded sensor was derived from the strain/stress distribution. Experiments had been carried out in some main aspects, including pressure and thermal test, from which the relationship between environment parameters and Bragg wavelength shifts was obtained. This research makes an initial attempt for realizing an on-line real-time long-term state monitoring and sets a base for the life cycle diagnostics of EPA in nuclear reactors.","PeriodicalId":289940,"journal":{"name":"Volume 9: Student Paper Competition","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stress Monitoring of Sealing Materials in Electrical Penetration Assemblies\",\"authors\":\"Fan Zhichun, L. Mingze, Chen Feng, Huang Zhiyong, Yan He\",\"doi\":\"10.1115/ICONE26-82165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Failure of sealing materials is a principal cause to the leakage of electrical penetration assemblies (EPA) in nuclear plants, and the essence can be attributed to small deformations or defects taking place in the sealing materials (glass, epoxy, etc.) as a result of harsh environment influence (high temperature, pressure and ionizing radiation), which leads to leakage when the stress/strain exceeds the threshold value. Metal-to-glass sealing EPA has unique advantages of higher temperature and pressure endurance than organic material sealing EPA, and has been applied in the pressure vessel of High-Temperature Reactor Pebble-bed Modules (HTR-PM) at the Shidao Bay Nuclear Power Plant in China. To achieve on-line state monitoring, we proposed a new method to monitor the stress in the sealing glass by optical fiber sensing technique. Our research showed that the stress in sealing glass could be measured via embedding an optical fiber Bragg grating (FBG) sensor in glass. Optical fiber sensing technique has been widely used for stress measurement in many fields, however applications in metal-to-glass sealing EPA have not been reported in the literature yet. Taking advantage of the small size of a fiber sensor, the embedding of fiber will not affect the sealing structure. And taking advantage of the similar chemical content, fiber and glass can be fused together easily without affecting insulation. In this paper, a brief review on applications of FBG in nuclear facilities was present. The model of FBG embedded EPA was built based on finite element method. Sensitivity analysis about the impact of environment parameters including temperature and pressure on stress had been studied numerically. And the theoretical Bragg wavelength shift of the embedded sensor was derived from the strain/stress distribution. Experiments had been carried out in some main aspects, including pressure and thermal test, from which the relationship between environment parameters and Bragg wavelength shifts was obtained. This research makes an initial attempt for realizing an on-line real-time long-term state monitoring and sets a base for the life cycle diagnostics of EPA in nuclear reactors.\",\"PeriodicalId\":289940,\"journal\":{\"name\":\"Volume 9: Student Paper Competition\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Student Paper Competition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ICONE26-82165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Student Paper Competition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICONE26-82165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

密封材料失效是核电站电侵穿组件(EPA)泄漏的主要原因,其本质是密封材料(玻璃、环氧树脂等)在恶劣环境影响(高温、高压、电离辐射)下发生微小变形或缺陷,当应力/应变超过阈值时导致泄漏。金属-玻璃密封EPA具有比有机材料密封EPA更高的耐温耐压的独特优势,已在中国石岛湾核电站高温堆球床模块(HTR-PM)压力容器中得到应用。为了实现密封玻璃的状态在线监测,提出了一种利用光纤传感技术监测密封玻璃应力的新方法。我们的研究表明,可以通过在玻璃中嵌入光纤布拉格光栅(FBG)传感器来测量密封玻璃中的应力。光纤传感技术已广泛应用于许多领域的应力测量,但在金属-玻璃密封环境中的应用尚未见文献报道。利用光纤传感器体积小的优点,光纤的嵌入不会影响密封结构。并且利用相似的化学成分,纤维和玻璃可以很容易地融合在一起而不影响绝缘。本文就光纤光栅在核设施中的应用作一综述。基于有限元法建立了FBG嵌入式EPA模型。对温度、压力等环境参数对应力影响的敏感性进行了数值分析。并根据应变/应力分布推导出了嵌入式传感器的理论布拉格波长位移。在压力和热测试等主要方面进行了实验,得到了环境参数与Bragg波长位移之间的关系。本研究为实现核反应堆中EPA的在线实时长期状态监测进行了初步尝试,为其全生命周期诊断奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stress Monitoring of Sealing Materials in Electrical Penetration Assemblies
Failure of sealing materials is a principal cause to the leakage of electrical penetration assemblies (EPA) in nuclear plants, and the essence can be attributed to small deformations or defects taking place in the sealing materials (glass, epoxy, etc.) as a result of harsh environment influence (high temperature, pressure and ionizing radiation), which leads to leakage when the stress/strain exceeds the threshold value. Metal-to-glass sealing EPA has unique advantages of higher temperature and pressure endurance than organic material sealing EPA, and has been applied in the pressure vessel of High-Temperature Reactor Pebble-bed Modules (HTR-PM) at the Shidao Bay Nuclear Power Plant in China. To achieve on-line state monitoring, we proposed a new method to monitor the stress in the sealing glass by optical fiber sensing technique. Our research showed that the stress in sealing glass could be measured via embedding an optical fiber Bragg grating (FBG) sensor in glass. Optical fiber sensing technique has been widely used for stress measurement in many fields, however applications in metal-to-glass sealing EPA have not been reported in the literature yet. Taking advantage of the small size of a fiber sensor, the embedding of fiber will not affect the sealing structure. And taking advantage of the similar chemical content, fiber and glass can be fused together easily without affecting insulation. In this paper, a brief review on applications of FBG in nuclear facilities was present. The model of FBG embedded EPA was built based on finite element method. Sensitivity analysis about the impact of environment parameters including temperature and pressure on stress had been studied numerically. And the theoretical Bragg wavelength shift of the embedded sensor was derived from the strain/stress distribution. Experiments had been carried out in some main aspects, including pressure and thermal test, from which the relationship between environment parameters and Bragg wavelength shifts was obtained. This research makes an initial attempt for realizing an on-line real-time long-term state monitoring and sets a base for the life cycle diagnostics of EPA in nuclear reactors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Heat Transfer and Fluid Flow Characteristics of One Side Heated Vertical Rectangular Channel Applied As Vessel Cooling System of VHTR Hydraulic Characteristics Research on SG Under Tube Plugging Operations Using FLUENT Study on Flow Structure in a Supersonic Steam Injector Electrochemical Measurement of Radio-Activated Metal Under High Temperature Condition Simulation Research on Thermal-Hydraulic Performance of a Natural Circulation Integrated Pressurized Water Reactor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1