模拟音乐听众的音乐音频偏好的个性关联

Alessandro B. Melchiorre, M. Schedl
{"title":"模拟音乐听众的音乐音频偏好的个性关联","authors":"Alessandro B. Melchiorre, M. Schedl","doi":"10.1145/3340631.3394874","DOIUrl":null,"url":null,"abstract":"Past studies have shown that personality has a significant association with user behaviour and preferences, not least towards music. This makes personality information a promising aspect for user modelling in personalised recommender systems and similar domains. In contrast to existing studies, which investigate personality correlates of music preferences via genres or styles, we study such correlates by modelling music preferences at a finer-grained content level, using audio features of the music users listen to. Leveraging listening and personality information of more than 1,300 Last.fm users, we identify several significant medium and weak correlations between music audio features and personality traits, the latter defined by the five-factor model. Our results provide useful insights into the relationship between personality and music preference, which can be valuable for music recommender systems in terms of more personalised recommendations.","PeriodicalId":417607,"journal":{"name":"Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Personality Correlates of Music Audio Preferences for Modelling Music Listeners\",\"authors\":\"Alessandro B. Melchiorre, M. Schedl\",\"doi\":\"10.1145/3340631.3394874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Past studies have shown that personality has a significant association with user behaviour and preferences, not least towards music. This makes personality information a promising aspect for user modelling in personalised recommender systems and similar domains. In contrast to existing studies, which investigate personality correlates of music preferences via genres or styles, we study such correlates by modelling music preferences at a finer-grained content level, using audio features of the music users listen to. Leveraging listening and personality information of more than 1,300 Last.fm users, we identify several significant medium and weak correlations between music audio features and personality traits, the latter defined by the five-factor model. Our results provide useful insights into the relationship between personality and music preference, which can be valuable for music recommender systems in terms of more personalised recommendations.\",\"PeriodicalId\":417607,\"journal\":{\"name\":\"Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3340631.3394874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3340631.3394874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

过去的研究表明,个性与用户的行为和偏好有着显著的联系,尤其是对音乐的偏好。这使得个性信息成为个性化推荐系统和类似领域中用户建模的一个有前途的方面。现有的研究通过类型或风格来调查音乐偏好的个性相关性,与之相反,我们通过在更细粒度的内容层面上建模音乐偏好来研究这种相关性,使用用户听的音乐的音频特征。利用1300余人的倾听和个性信息。在FM用户中,我们发现音乐音频特征与人格特质之间存在显著的中、弱相关性,后者由五因素模型定义。我们的研究结果为个性和音乐偏好之间的关系提供了有用的见解,这对于音乐推荐系统在更个性化的推荐方面是有价值的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Personality Correlates of Music Audio Preferences for Modelling Music Listeners
Past studies have shown that personality has a significant association with user behaviour and preferences, not least towards music. This makes personality information a promising aspect for user modelling in personalised recommender systems and similar domains. In contrast to existing studies, which investigate personality correlates of music preferences via genres or styles, we study such correlates by modelling music preferences at a finer-grained content level, using audio features of the music users listen to. Leveraging listening and personality information of more than 1,300 Last.fm users, we identify several significant medium and weak correlations between music audio features and personality traits, the latter defined by the five-factor model. Our results provide useful insights into the relationship between personality and music preference, which can be valuable for music recommender systems in terms of more personalised recommendations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Digital Pen Features Predict Task Difficulty and User Performance of Cognitive Tests Workshop on Explainable User Models and Personalized Systems (ExUM 2020) The Eyes Are the Windows to the Mind: Implications for AI-Driven Personalized Interaction Inside Out: Exploring the Emotional Side of Search Engines in the Classroom Modeling Tourists' Personality in Recommender Systems: How Does Personality Influence Preferences for Tourist Attractions?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1