Pangao Du, Xianghong Lin, Xiaomei Pi, Xiangwen Wang
{"title":"深度循环尖峰神经网络的无监督学习算法","authors":"Pangao Du, Xianghong Lin, Xiaomei Pi, Xiangwen Wang","doi":"10.1109/UEMCON51285.2020.9298074","DOIUrl":null,"url":null,"abstract":"Deep recurrent spiking neural networks (DRSNNs) are stacked with the recurrent spiking neural machine (RSNM) modules. However, because of their intricately discontinuous and complex recurrent structures, it is difficult to pre-training the synaptic weights of RSNMs by simple and effective learning method in deep recurrent network. This paper proposed a new unsupervised multi-spike learning rule and the RSNM is trained by this rule, the complex spatiotemporal pattern of spike trains are learned. The spike signal will complete the two processes of forward propagation and reverse reconstruction, and then adjust the synaptic weight according to the error. This algorithm is successfully applied to spike trains, the learning rate and neuron number in the RSNMs are analyzed. In addition, the layer-wise pre-training method of DRSNN is presented, and the reconstruction error shows the algorithm has a better learning effect.","PeriodicalId":433609,"journal":{"name":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Unsupervised Learning Algorithm for Deep Recurrent Spiking Neural Networks\",\"authors\":\"Pangao Du, Xianghong Lin, Xiaomei Pi, Xiangwen Wang\",\"doi\":\"10.1109/UEMCON51285.2020.9298074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep recurrent spiking neural networks (DRSNNs) are stacked with the recurrent spiking neural machine (RSNM) modules. However, because of their intricately discontinuous and complex recurrent structures, it is difficult to pre-training the synaptic weights of RSNMs by simple and effective learning method in deep recurrent network. This paper proposed a new unsupervised multi-spike learning rule and the RSNM is trained by this rule, the complex spatiotemporal pattern of spike trains are learned. The spike signal will complete the two processes of forward propagation and reverse reconstruction, and then adjust the synaptic weight according to the error. This algorithm is successfully applied to spike trains, the learning rate and neuron number in the RSNMs are analyzed. In addition, the layer-wise pre-training method of DRSNN is presented, and the reconstruction error shows the algorithm has a better learning effect.\",\"PeriodicalId\":433609,\"journal\":{\"name\":\"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"volume\":\"154 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UEMCON51285.2020.9298074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON51285.2020.9298074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Unsupervised Learning Algorithm for Deep Recurrent Spiking Neural Networks
Deep recurrent spiking neural networks (DRSNNs) are stacked with the recurrent spiking neural machine (RSNM) modules. However, because of their intricately discontinuous and complex recurrent structures, it is difficult to pre-training the synaptic weights of RSNMs by simple and effective learning method in deep recurrent network. This paper proposed a new unsupervised multi-spike learning rule and the RSNM is trained by this rule, the complex spatiotemporal pattern of spike trains are learned. The spike signal will complete the two processes of forward propagation and reverse reconstruction, and then adjust the synaptic weight according to the error. This algorithm is successfully applied to spike trains, the learning rate and neuron number in the RSNMs are analyzed. In addition, the layer-wise pre-training method of DRSNN is presented, and the reconstruction error shows the algorithm has a better learning effect.