改进谱减法抑制fMRI时间序列随机噪声

S. M. Monir, M. Siyal, H.K. Maheshweri
{"title":"改进谱减法抑制fMRI时间序列随机噪声","authors":"S. M. Monir, M. Siyal, H.K. Maheshweri","doi":"10.1109/INMIC.2008.4777778","DOIUrl":null,"url":null,"abstract":"We present a novel method for random noise-suppression in functional magnetic resonance imaging (fMRI) time-series based on modified spectral subtraction. The method estimates the signal and noise models at every voxel in the functional data from a small neighborhood, without prior knowledge of the signal characteristics. Spectral subtraction is then performed to obtain a noise-suppressed power spectrum of the voxel under consideration. We demonstrate the performance of the proposed method by preprocessing synthetic as well as real fMRI data. The method is found to efficiently reduce random noise while preserving the deterministic components of the signal, thus, enhancing the sensitivity of the fMRI analysis.","PeriodicalId":112530,"journal":{"name":"2008 IEEE International Multitopic Conference","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random noise suppression in fMRI time-series using modified spectral subtraction\",\"authors\":\"S. M. Monir, M. Siyal, H.K. Maheshweri\",\"doi\":\"10.1109/INMIC.2008.4777778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel method for random noise-suppression in functional magnetic resonance imaging (fMRI) time-series based on modified spectral subtraction. The method estimates the signal and noise models at every voxel in the functional data from a small neighborhood, without prior knowledge of the signal characteristics. Spectral subtraction is then performed to obtain a noise-suppressed power spectrum of the voxel under consideration. We demonstrate the performance of the proposed method by preprocessing synthetic as well as real fMRI data. The method is found to efficiently reduce random noise while preserving the deterministic components of the signal, thus, enhancing the sensitivity of the fMRI analysis.\",\"PeriodicalId\":112530,\"journal\":{\"name\":\"2008 IEEE International Multitopic Conference\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Multitopic Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INMIC.2008.4777778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Multitopic Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMIC.2008.4777778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于改进谱减法的功能磁共振成像(fMRI)时间序列随机噪声抑制方法。该方法在不需要事先知道信号特征的情况下,从小邻域估计功能数据中每个体素的信号和噪声模型。然后进行谱减法以获得所考虑的体素的噪声抑制功率谱。我们通过预处理合成和真实的fMRI数据来证明该方法的性能。该方法有效地降低了随机噪声,同时保留了信号的确定性成分,从而提高了fMRI分析的灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Random noise suppression in fMRI time-series using modified spectral subtraction
We present a novel method for random noise-suppression in functional magnetic resonance imaging (fMRI) time-series based on modified spectral subtraction. The method estimates the signal and noise models at every voxel in the functional data from a small neighborhood, without prior knowledge of the signal characteristics. Spectral subtraction is then performed to obtain a noise-suppressed power spectrum of the voxel under consideration. We demonstrate the performance of the proposed method by preprocessing synthetic as well as real fMRI data. The method is found to efficiently reduce random noise while preserving the deterministic components of the signal, thus, enhancing the sensitivity of the fMRI analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of nano particles on semiconductor manufacturing Graphical modeling and optimization of air interface standards for Software Defined Radios Per Packet Authentication for IEEE 802.11 wireless LAN An intelligent agri-information dissemination framework: An e-Government Characterization of waveguide slots using full wave EM analysis software HFSS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1