PAL,预标注和主动学习工具

Maria Skeppstedt, C. Paradis, A. Kerren
{"title":"PAL,预标注和主动学习工具","authors":"Maria Skeppstedt, C. Paradis, A. Kerren","doi":"10.21248/jlcl.31.2016.203","DOIUrl":null,"url":null,"abstract":"Many natural language processing systems rely on machine learning models that are trained on large amounts of manually annotated text data. The lack of sufficient amounts of annotated data is, however, a common obstacle for such systems, since manual annotation of text is often expensive and time-consuming. The aim of “PAL\", a tool for Pre-annotation and Active Learning” is to provide a ready-made package that can be used to simplify annotation and to reduce the amount of annotated data required to train a machine learning classifier. The package provides support for two techniques that have been shown to be successful in previous studies, namely active learning and pre-annotation. The output of the pre-annotation is provided in the annotation format of the annotation tool BRAT, but PAL is a stand-alone package that can be adapted to other formats. (Less)","PeriodicalId":402489,"journal":{"name":"J. Lang. Technol. Comput. Linguistics","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"PAL, a tool for Pre-annotation and Active Learning\",\"authors\":\"Maria Skeppstedt, C. Paradis, A. Kerren\",\"doi\":\"10.21248/jlcl.31.2016.203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many natural language processing systems rely on machine learning models that are trained on large amounts of manually annotated text data. The lack of sufficient amounts of annotated data is, however, a common obstacle for such systems, since manual annotation of text is often expensive and time-consuming. The aim of “PAL\\\", a tool for Pre-annotation and Active Learning” is to provide a ready-made package that can be used to simplify annotation and to reduce the amount of annotated data required to train a machine learning classifier. The package provides support for two techniques that have been shown to be successful in previous studies, namely active learning and pre-annotation. The output of the pre-annotation is provided in the annotation format of the annotation tool BRAT, but PAL is a stand-alone package that can be adapted to other formats. (Less)\",\"PeriodicalId\":402489,\"journal\":{\"name\":\"J. Lang. Technol. Comput. Linguistics\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Lang. Technol. Comput. Linguistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21248/jlcl.31.2016.203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Lang. Technol. Comput. Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21248/jlcl.31.2016.203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

许多自然语言处理系统依赖于机器学习模型,这些模型是在大量手动注释的文本数据上训练的。然而,缺乏足够数量的注释数据是此类系统的一个常见障碍,因为手动注释文本通常既昂贵又耗时。“Pre-annotation and Active Learning”工具“PAL”的目的是提供一个现成的包,可以用来简化标注,减少训练机器学习分类器所需的标注数据量。该包为两种技术提供了支持,这两种技术在以前的研究中已经被证明是成功的,即主动学习和预注释。预注释的输出以注释工具BRAT的注释格式提供,但是PAL是一个可以适应其他格式的独立包。(少)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PAL, a tool for Pre-annotation and Active Learning
Many natural language processing systems rely on machine learning models that are trained on large amounts of manually annotated text data. The lack of sufficient amounts of annotated data is, however, a common obstacle for such systems, since manual annotation of text is often expensive and time-consuming. The aim of “PAL", a tool for Pre-annotation and Active Learning” is to provide a ready-made package that can be used to simplify annotation and to reduce the amount of annotated data required to train a machine learning classifier. The package provides support for two techniques that have been shown to be successful in previous studies, namely active learning and pre-annotation. The output of the pre-annotation is provided in the annotation format of the annotation tool BRAT, but PAL is a stand-alone package that can be adapted to other formats. (Less)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aufbau eines Referenzkorpus zur deutschsprachigen internetbasierten Kommunikation als Zusatzkomponente für die Korpora im Projekt 'Digitales Wörterbuch der deutschen Sprache' (DWDS) Crowdsourcing the OCR Ground Truth of a German and French Cultural Heritage Corpus Comparison of OCR Accuracy on Early Printed Books using the Open Source Engines Calamari and OCRopus Ground Truth for training OCR engines on historical documents in German Fraktur and Early Modern Latin Supervised OCR Error Detection and Correction Using Statistical and Neural Machine Translation Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1