关联规则挖掘的遗传规划无参数算法

J. M. Luna, J. Romero, C. Romero, Sebastián Ventura
{"title":"关联规则挖掘的遗传规划无参数算法","authors":"J. M. Luna, J. Romero, C. Romero, Sebastián Ventura","doi":"10.1109/ISDA.2012.6416514","DOIUrl":null,"url":null,"abstract":"This paper presents a free-parameter grammar-guided genetic programming algorithm for mining association rules. This algorithm uses a contex-free grammar to represent individuals, encoding the solutions in a tree-shape conformant to the grammar, so they are more expressive and flexible. The algorithm here presented has the advantages of using evolutionary algorithms for mining association rules, and it also solves the problem of tuning the huge number of parameters required by these algorithms. The main feature of this algorithm is the small number of parameters required, providing the possibility of discovering association rules in an easy way for non-expert users. We compare our approach to existing evolutionary and exhaustive search algorithms, obtaining important results and overcoming the drawbacks of both exhaustive search and evolutionary algorithms. The experimental stage reveals that this approach discovers frequent and reliable rules without a parameter tuning.","PeriodicalId":370150,"journal":{"name":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A genetic programming free-parameter algorithm for mining association rules\",\"authors\":\"J. M. Luna, J. Romero, C. Romero, Sebastián Ventura\",\"doi\":\"10.1109/ISDA.2012.6416514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a free-parameter grammar-guided genetic programming algorithm for mining association rules. This algorithm uses a contex-free grammar to represent individuals, encoding the solutions in a tree-shape conformant to the grammar, so they are more expressive and flexible. The algorithm here presented has the advantages of using evolutionary algorithms for mining association rules, and it also solves the problem of tuning the huge number of parameters required by these algorithms. The main feature of this algorithm is the small number of parameters required, providing the possibility of discovering association rules in an easy way for non-expert users. We compare our approach to existing evolutionary and exhaustive search algorithms, obtaining important results and overcoming the drawbacks of both exhaustive search and evolutionary algorithms. The experimental stage reveals that this approach discovers frequent and reliable rules without a parameter tuning.\",\"PeriodicalId\":370150,\"journal\":{\"name\":\"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2012.6416514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2012.6416514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用于关联规则挖掘的自由参数语法导向遗传规划算法。该算法使用上下文无关的语法来表示个体,以符合语法的树形编码解决方案,因此更具表现力和灵活性。本文提出的算法既具有使用进化算法挖掘关联规则的优点,又解决了这些算法所需要的大量参数的调优问题。该算法的主要特点是所需参数数量少,为非专业用户提供了以简单方式发现关联规则的可能性。我们将我们的方法与现有的进化搜索算法和穷举搜索算法进行了比较,获得了重要的结果,并克服了穷举搜索算法和进化算法的缺点。实验阶段表明,该方法无需参数调优即可发现频繁且可靠的规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A genetic programming free-parameter algorithm for mining association rules
This paper presents a free-parameter grammar-guided genetic programming algorithm for mining association rules. This algorithm uses a contex-free grammar to represent individuals, encoding the solutions in a tree-shape conformant to the grammar, so they are more expressive and flexible. The algorithm here presented has the advantages of using evolutionary algorithms for mining association rules, and it also solves the problem of tuning the huge number of parameters required by these algorithms. The main feature of this algorithm is the small number of parameters required, providing the possibility of discovering association rules in an easy way for non-expert users. We compare our approach to existing evolutionary and exhaustive search algorithms, obtaining important results and overcoming the drawbacks of both exhaustive search and evolutionary algorithms. The experimental stage reveals that this approach discovers frequent and reliable rules without a parameter tuning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of risk score for heart disease using associative classification and hybrid feature subset selection WSDL-TC: Collaborative customization of web services Knowledge representation and reasoning based on generalised fuzzy Petri nets Interval-valued fuzzy graph representation of concept lattice Community optimization: Function optimization by a simulated web community
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1