{"title":"灌注加权MRI中基于时频分析的运动检测","authors":"M. Sushma, Anubha Gupta, J. Sivaswamy","doi":"10.1109/NCVPRIPG.2013.6776215","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel automated method to detect motion in perfusion weighted images (PWI), which is a type of magnetic resonance imaging (MRI). In PWI, blood perfusion is measured by injecting an exogenous tracer called bolus into the blood flow of a patient and then tracking it in the brain. PWI requires a long data acquisition time to form a time series of volumes. Hence, motion occurs due to patient's unavoidable movements during a scan, which in turn results into motion corrupted data. There is a necessity of detection of these motion artifacts on captured data for correct disease diagnosis. In PWI, intensity profile gets disturbed due to occurrence of motion and/or bolus passage through the blood vessels. There is no way to distinguish between motion occurrence and bolus passage. In this paper, we propose an efficient time-frequency analysis based motion detection method. We show that proposed method is computationally inexpensive and fast. This method is evaluated on a DSC-MRI sequence with simulated motion of different degrees. We show that our approach detects motion in a few seconds.","PeriodicalId":436402,"journal":{"name":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-frequency analysis based motion detection in perfusion weighted MRI\",\"authors\":\"M. Sushma, Anubha Gupta, J. Sivaswamy\",\"doi\":\"10.1109/NCVPRIPG.2013.6776215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel automated method to detect motion in perfusion weighted images (PWI), which is a type of magnetic resonance imaging (MRI). In PWI, blood perfusion is measured by injecting an exogenous tracer called bolus into the blood flow of a patient and then tracking it in the brain. PWI requires a long data acquisition time to form a time series of volumes. Hence, motion occurs due to patient's unavoidable movements during a scan, which in turn results into motion corrupted data. There is a necessity of detection of these motion artifacts on captured data for correct disease diagnosis. In PWI, intensity profile gets disturbed due to occurrence of motion and/or bolus passage through the blood vessels. There is no way to distinguish between motion occurrence and bolus passage. In this paper, we propose an efficient time-frequency analysis based motion detection method. We show that proposed method is computationally inexpensive and fast. This method is evaluated on a DSC-MRI sequence with simulated motion of different degrees. We show that our approach detects motion in a few seconds.\",\"PeriodicalId\":436402,\"journal\":{\"name\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCVPRIPG.2013.6776215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCVPRIPG.2013.6776215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Time-frequency analysis based motion detection in perfusion weighted MRI
In this paper, we present a novel automated method to detect motion in perfusion weighted images (PWI), which is a type of magnetic resonance imaging (MRI). In PWI, blood perfusion is measured by injecting an exogenous tracer called bolus into the blood flow of a patient and then tracking it in the brain. PWI requires a long data acquisition time to form a time series of volumes. Hence, motion occurs due to patient's unavoidable movements during a scan, which in turn results into motion corrupted data. There is a necessity of detection of these motion artifacts on captured data for correct disease diagnosis. In PWI, intensity profile gets disturbed due to occurrence of motion and/or bolus passage through the blood vessels. There is no way to distinguish between motion occurrence and bolus passage. In this paper, we propose an efficient time-frequency analysis based motion detection method. We show that proposed method is computationally inexpensive and fast. This method is evaluated on a DSC-MRI sequence with simulated motion of different degrees. We show that our approach detects motion in a few seconds.