基于传感器共覆盖的无线传感器网络中的未认证事件检测

M. Kamarei, A. Patooghy, M. Fazeli
{"title":"基于传感器共覆盖的无线传感器网络中的未认证事件检测","authors":"M. Kamarei, A. Patooghy, M. Fazeli","doi":"10.22042/ISECURE.2016.8.1.4","DOIUrl":null,"url":null,"abstract":"Wireless Sensor Networks (WSNs) offer inherent packet redundancy since each point within the network area is covered by more than one sensor node. This phenomenon, which is known as sensors co-coverage, is used in this paper to detect unauthenticated events. Unauthenticated event broadcasting in a WSN imposes network congestion, worsens the packet loss rate, and increases the network energy congestion. In the proposed method, the more the safe, the less the unsafe (MSLU) method, each secure occurred event must be confirmed by various sensor nodes; otherwise the event is dropped. Indeed, the proposed method tends to forward event occurrence reports that are detected by various sensor nodes. The proposed method is evaluated by means of simulation as well as analytical modeling. A wide range of simulations, which are carried out using NS-2, show that the proposed method detects more than 85% of unauthenticated events. This comes at the cost of the network end-to-end delay of 20% because the proposed method does not impose delay on incoming packets. In addition, the proposed method is evaluated by means of an analytical model based on queuing networks. The model accurately estimates the network performance utilizing the proposed unauthenticated event detection method. © 2016 ISC. All rights reserved.","PeriodicalId":436674,"journal":{"name":"ISC Int. J. Inf. Secur.","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unauthenticated event detection in wireless sensor networks using sensors co-coverage\",\"authors\":\"M. Kamarei, A. Patooghy, M. Fazeli\",\"doi\":\"10.22042/ISECURE.2016.8.1.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless Sensor Networks (WSNs) offer inherent packet redundancy since each point within the network area is covered by more than one sensor node. This phenomenon, which is known as sensors co-coverage, is used in this paper to detect unauthenticated events. Unauthenticated event broadcasting in a WSN imposes network congestion, worsens the packet loss rate, and increases the network energy congestion. In the proposed method, the more the safe, the less the unsafe (MSLU) method, each secure occurred event must be confirmed by various sensor nodes; otherwise the event is dropped. Indeed, the proposed method tends to forward event occurrence reports that are detected by various sensor nodes. The proposed method is evaluated by means of simulation as well as analytical modeling. A wide range of simulations, which are carried out using NS-2, show that the proposed method detects more than 85% of unauthenticated events. This comes at the cost of the network end-to-end delay of 20% because the proposed method does not impose delay on incoming packets. In addition, the proposed method is evaluated by means of an analytical model based on queuing networks. The model accurately estimates the network performance utilizing the proposed unauthenticated event detection method. © 2016 ISC. All rights reserved.\",\"PeriodicalId\":436674,\"journal\":{\"name\":\"ISC Int. J. Inf. Secur.\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISC Int. J. Inf. Secur.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22042/ISECURE.2016.8.1.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISC Int. J. Inf. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22042/ISECURE.2016.8.1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无线传感器网络(wsn)提供了固有的数据包冗余,因为网络区域内的每个点都由多个传感器节点覆盖。这种被称为传感器共覆盖的现象在本文中被用来检测未经验证的事件。在WSN中,未经认证的事件广播会造成网络拥塞,加剧丢包率,增加网络能量拥塞。在本文提出的多安全少不安全(MSLU)方法中,每个安全发生的事件都必须经过各个传感器节点的确认;否则事件将被丢弃。实际上,所提出的方法倾向于转发由各个传感器节点检测到的事件发生报告。通过仿真和分析建模对该方法进行了验证。使用NS-2进行的广泛模拟表明,所提出的方法可以检测到85%以上的未经身份验证的事件。这是以20%的网络端到端延迟为代价的,因为所提出的方法不会对传入数据包施加延迟。此外,利用基于排队网络的分析模型对该方法进行了评价。该模型利用提出的未经身份验证的事件检测方法准确地估计了网络性能。©2016 isc。版权所有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unauthenticated event detection in wireless sensor networks using sensors co-coverage
Wireless Sensor Networks (WSNs) offer inherent packet redundancy since each point within the network area is covered by more than one sensor node. This phenomenon, which is known as sensors co-coverage, is used in this paper to detect unauthenticated events. Unauthenticated event broadcasting in a WSN imposes network congestion, worsens the packet loss rate, and increases the network energy congestion. In the proposed method, the more the safe, the less the unsafe (MSLU) method, each secure occurred event must be confirmed by various sensor nodes; otherwise the event is dropped. Indeed, the proposed method tends to forward event occurrence reports that are detected by various sensor nodes. The proposed method is evaluated by means of simulation as well as analytical modeling. A wide range of simulations, which are carried out using NS-2, show that the proposed method detects more than 85% of unauthenticated events. This comes at the cost of the network end-to-end delay of 20% because the proposed method does not impose delay on incoming packets. In addition, the proposed method is evaluated by means of an analytical model based on queuing networks. The model accurately estimates the network performance utilizing the proposed unauthenticated event detection method. © 2016 ISC. All rights reserved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
One-Shot Achievable Secrecy Rate Regions for Quantum Interference Wiretap Channel Quantum Multiple Access Wiretap Channel: On the One-Shot Achievable Secrecy Rate Regions Towards a Formal Approach for Detection of Vulnerabilities in the Android Permissions System Towards event aggregation for reducing the volume of logged events during IKC stages of APT attacks A Time Randomization-Based Countermeasure Against the Template Side-Channel Attack
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1