{"title":"基于激光视觉系统的非完整水下航行器半自主遥操作:一种视觉伺服切换控制方法","authors":"G. Karras, S. Loizou, K. Kyriakopoulos","doi":"10.1109/MED.2009.5164641","DOIUrl":null,"url":null,"abstract":"This paper describes a switching visual servoing control scheme designed for an underwater vehicle with nonholonomic constraints. The objective of the proposed control methodology is to provide a human tele-operator the capability to move the vehicle without loosing a visual target from the vision system's optical field. Target tracking and vehicle pose are obtained using a Laser Vision System (LVS). Using a Lyapunov based switching controller design, the resulting controller has analytically guaranteed stability and convergence properties, while its applicability and performance have been experimentally verified using a small non-holonomic Remotely Operated Vehicle (ROV), in a test tank.","PeriodicalId":422386,"journal":{"name":"2009 17th Mediterranean Conference on Control and Automation","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Semi-autonomous teleoperation of a non-holonomic underwater vehicle using a Laser Vision System: A visual-servoing switching control approach\",\"authors\":\"G. Karras, S. Loizou, K. Kyriakopoulos\",\"doi\":\"10.1109/MED.2009.5164641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a switching visual servoing control scheme designed for an underwater vehicle with nonholonomic constraints. The objective of the proposed control methodology is to provide a human tele-operator the capability to move the vehicle without loosing a visual target from the vision system's optical field. Target tracking and vehicle pose are obtained using a Laser Vision System (LVS). Using a Lyapunov based switching controller design, the resulting controller has analytically guaranteed stability and convergence properties, while its applicability and performance have been experimentally verified using a small non-holonomic Remotely Operated Vehicle (ROV), in a test tank.\",\"PeriodicalId\":422386,\"journal\":{\"name\":\"2009 17th Mediterranean Conference on Control and Automation\",\"volume\":\"162 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 17th Mediterranean Conference on Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED.2009.5164641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 17th Mediterranean Conference on Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2009.5164641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Semi-autonomous teleoperation of a non-holonomic underwater vehicle using a Laser Vision System: A visual-servoing switching control approach
This paper describes a switching visual servoing control scheme designed for an underwater vehicle with nonholonomic constraints. The objective of the proposed control methodology is to provide a human tele-operator the capability to move the vehicle without loosing a visual target from the vision system's optical field. Target tracking and vehicle pose are obtained using a Laser Vision System (LVS). Using a Lyapunov based switching controller design, the resulting controller has analytically guaranteed stability and convergence properties, while its applicability and performance have been experimentally verified using a small non-holonomic Remotely Operated Vehicle (ROV), in a test tank.