最小外围电路开销的内存神经网络计算算法/硬件协同设计

Hyungjun Kim, Yulhwa Kim, Sungju Ryu, Jae-Joon Kim
{"title":"最小外围电路开销的内存神经网络计算算法/硬件协同设计","authors":"Hyungjun Kim, Yulhwa Kim, Sungju Ryu, Jae-Joon Kim","doi":"10.1109/DAC18072.2020.9218657","DOIUrl":null,"url":null,"abstract":"We propose an in-memory neural network accelerator architecture called MOSAIC which uses minimal form of peripheral circuits; 1-bit word line driver to replace DAC and 1-bit sense amplifier to replace ADC. To map multi-bit neural networks on MOSAIC architecture which has 1-bit precision peripheral circuits, we also propose a bit-splitting method to approximate the original network by separating each bit path of the multi-bit network so that each bit path can propagate independently throughout the network. Thanks to the minimal form of peripheral circuits, MOSAIC can achieve an order of magnitude higher energy and area efficiency than previous in-memory neural network accelerators.","PeriodicalId":428807,"journal":{"name":"2020 57th ACM/IEEE Design Automation Conference (DAC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Algorithm/Hardware Co-Design for In-Memory Neural Network Computing with Minimal Peripheral Circuit Overhead\",\"authors\":\"Hyungjun Kim, Yulhwa Kim, Sungju Ryu, Jae-Joon Kim\",\"doi\":\"10.1109/DAC18072.2020.9218657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an in-memory neural network accelerator architecture called MOSAIC which uses minimal form of peripheral circuits; 1-bit word line driver to replace DAC and 1-bit sense amplifier to replace ADC. To map multi-bit neural networks on MOSAIC architecture which has 1-bit precision peripheral circuits, we also propose a bit-splitting method to approximate the original network by separating each bit path of the multi-bit network so that each bit path can propagate independently throughout the network. Thanks to the minimal form of peripheral circuits, MOSAIC can achieve an order of magnitude higher energy and area efficiency than previous in-memory neural network accelerators.\",\"PeriodicalId\":428807,\"journal\":{\"name\":\"2020 57th ACM/IEEE Design Automation Conference (DAC)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 57th ACM/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DAC18072.2020.9218657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 57th ACM/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC18072.2020.9218657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们提出了一种称为MOSAIC的内存神经网络加速器架构,它使用最小形式的外围电路;1位字行驱动器取代DAC和1位感测放大器取代ADC。为了将多比特神经网络映射到具有1位精度外围电路的MOSAIC架构上,我们还提出了一种比特分割方法,通过分离多比特网络的每个比特路径来近似原始网络,使每个比特路径在网络中独立传播。由于外围电路的最小形式,MOSAIC可以实现比以前的内存神经网络加速器高数量级的能量和面积效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Algorithm/Hardware Co-Design for In-Memory Neural Network Computing with Minimal Peripheral Circuit Overhead
We propose an in-memory neural network accelerator architecture called MOSAIC which uses minimal form of peripheral circuits; 1-bit word line driver to replace DAC and 1-bit sense amplifier to replace ADC. To map multi-bit neural networks on MOSAIC architecture which has 1-bit precision peripheral circuits, we also propose a bit-splitting method to approximate the original network by separating each bit path of the multi-bit network so that each bit path can propagate independently throughout the network. Thanks to the minimal form of peripheral circuits, MOSAIC can achieve an order of magnitude higher energy and area efficiency than previous in-memory neural network accelerators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FCNNLib: An Efficient and Flexible Convolution Algorithm Library on FPGAs AXI HyperConnect: A Predictable, Hypervisor-level Interconnect for Hardware Accelerators in FPGA SoC Pythia: Intellectual Property Verification in Zero-Knowledge Reuse-trap: Re-purposing Cache Reuse Distance to Defend against Side Channel Leakage Navigator: Dynamic Multi-kernel Scheduling to Improve GPU Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1