基于配准插值的实时体可视化

L. Laursen, H. Ólafsdóttir, J. A. Bærentzen, M. Hansen, B. Ersbøll
{"title":"基于配准插值的实时体可视化","authors":"L. Laursen, H. Ólafsdóttir, J. A. Bærentzen, M. Hansen, B. Ersbøll","doi":"10.1145/2448531.2448533","DOIUrl":null,"url":null,"abstract":"Rendering tomographic data sets is a computationally expensive task, and often accomplished using hardware acceleration. The data sets are usually anisotropic as a result of the process used to acquire them. A vital part of rendering them is the conversion of the discrete signal back into a continuous one, via interpolation. On graphics hardware, this is often achieved via simple linear interpolation.\n We present a novel approach for real-time anisotropic volume data interpolation on a graphics processing unit and draw comparisons to standardized interpolation alternatives. Our approach uses a pre-computed set of cross-slice correspondences to compensate for missing data. We perform a qualitative analysis using sparse data sets, investigating both visual quality, as well divergence from the ground truth, testing the limits of the interpolation method.\n Our method produces high quality interpolation with a moderate performance impact compared to alternatives. It is ideal for reconstructing sparse data sets, as well as minimizing quality loss while scaling large amounts of data to fit on most mobile graphics cards.","PeriodicalId":235681,"journal":{"name":"Spring conference on Computer graphics","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Registration-based interpolation real-time volume visualization\",\"authors\":\"L. Laursen, H. Ólafsdóttir, J. A. Bærentzen, M. Hansen, B. Ersbøll\",\"doi\":\"10.1145/2448531.2448533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rendering tomographic data sets is a computationally expensive task, and often accomplished using hardware acceleration. The data sets are usually anisotropic as a result of the process used to acquire them. A vital part of rendering them is the conversion of the discrete signal back into a continuous one, via interpolation. On graphics hardware, this is often achieved via simple linear interpolation.\\n We present a novel approach for real-time anisotropic volume data interpolation on a graphics processing unit and draw comparisons to standardized interpolation alternatives. Our approach uses a pre-computed set of cross-slice correspondences to compensate for missing data. We perform a qualitative analysis using sparse data sets, investigating both visual quality, as well divergence from the ground truth, testing the limits of the interpolation method.\\n Our method produces high quality interpolation with a moderate performance impact compared to alternatives. It is ideal for reconstructing sparse data sets, as well as minimizing quality loss while scaling large amounts of data to fit on most mobile graphics cards.\",\"PeriodicalId\":235681,\"journal\":{\"name\":\"Spring conference on Computer graphics\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spring conference on Computer graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2448531.2448533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spring conference on Computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2448531.2448533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

呈现层析数据集是一项计算成本很高的任务,通常使用硬件加速来完成。数据集通常是各向异性的,这是用于获取它们的过程的结果。渲染它们的一个重要部分是通过插值将离散信号转换回连续信号。在图形硬件上,这通常是通过简单的线性插值实现的。我们提出了一种在图形处理单元上实时各向异性体数据插值的新方法,并与标准化插值方案进行了比较。我们的方法使用预先计算的横片对应集来补偿丢失的数据。我们使用稀疏数据集进行定性分析,调查视觉质量,以及与地面事实的分歧,测试插值方法的局限性。我们的方法产生高质量的插值与适度的性能影响相比,替代方案。它非常适合重建稀疏数据集,以及在扩展大量数据以适应大多数移动显卡时将质量损失降至最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Registration-based interpolation real-time volume visualization
Rendering tomographic data sets is a computationally expensive task, and often accomplished using hardware acceleration. The data sets are usually anisotropic as a result of the process used to acquire them. A vital part of rendering them is the conversion of the discrete signal back into a continuous one, via interpolation. On graphics hardware, this is often achieved via simple linear interpolation. We present a novel approach for real-time anisotropic volume data interpolation on a graphics processing unit and draw comparisons to standardized interpolation alternatives. Our approach uses a pre-computed set of cross-slice correspondences to compensate for missing data. We perform a qualitative analysis using sparse data sets, investigating both visual quality, as well divergence from the ground truth, testing the limits of the interpolation method. Our method produces high quality interpolation with a moderate performance impact compared to alternatives. It is ideal for reconstructing sparse data sets, as well as minimizing quality loss while scaling large amounts of data to fit on most mobile graphics cards.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smoothing in 3D with reference points and polynomials Green's function solution to subsurface light transport for BRDF computation Doppler-based 3D Blood Flow Imaging and Visualization Parallel MDOM for light transport in participating media Dynamic Texture Enlargement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1