云计算中基于集群的负载均衡

Surbhi Kapoor, Chetna Dabas
{"title":"云计算中基于集群的负载均衡","authors":"Surbhi Kapoor, Chetna Dabas","doi":"10.1109/IC3.2015.7346656","DOIUrl":null,"url":null,"abstract":"For a cloud datacenter the biggest issue is how to tackle billions of requests coming dynamically from the end users. To handle such requests efficiently and effectively, there is a need to distribute the load evenly among the cloud nodes. To achieve this goal, various load balancing approaches have been proposed in the past years. Load balancing strategies aim at achieving high user satisfaction by minimizing response time of the tasks and improving resource utilization through even and fair allocation of cloud resources. The traditional Throttled load balancing algorithm is a good approach for load balancing in cloud computing as it distributes the incoming jobs evenly among the VMs. But the major drawback is that this algorithm works well for environments with homogeneous VMS, does not considers the resource specific demands of the tasks and has additional overhead of scanning the entire list of VMs every time a task comes. In this paper, these issues have been addressed by proposing an algorithm Cluster based load balancing which works well in heterogeneous nodes environment, considers resource specific demands of the tasks and reduces scanning overhead by dividing the machines into clusters. Experimental results have shown that our algorithm gives better results in terms of waiting time, execution time, turnaround time and throughput as compared to existing throttled and modified throttled algorithms.","PeriodicalId":217950,"journal":{"name":"2015 Eighth International Conference on Contemporary Computing (IC3)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Cluster based load balancing in cloud computing\",\"authors\":\"Surbhi Kapoor, Chetna Dabas\",\"doi\":\"10.1109/IC3.2015.7346656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a cloud datacenter the biggest issue is how to tackle billions of requests coming dynamically from the end users. To handle such requests efficiently and effectively, there is a need to distribute the load evenly among the cloud nodes. To achieve this goal, various load balancing approaches have been proposed in the past years. Load balancing strategies aim at achieving high user satisfaction by minimizing response time of the tasks and improving resource utilization through even and fair allocation of cloud resources. The traditional Throttled load balancing algorithm is a good approach for load balancing in cloud computing as it distributes the incoming jobs evenly among the VMs. But the major drawback is that this algorithm works well for environments with homogeneous VMS, does not considers the resource specific demands of the tasks and has additional overhead of scanning the entire list of VMs every time a task comes. In this paper, these issues have been addressed by proposing an algorithm Cluster based load balancing which works well in heterogeneous nodes environment, considers resource specific demands of the tasks and reduces scanning overhead by dividing the machines into clusters. Experimental results have shown that our algorithm gives better results in terms of waiting time, execution time, turnaround time and throughput as compared to existing throttled and modified throttled algorithms.\",\"PeriodicalId\":217950,\"journal\":{\"name\":\"2015 Eighth International Conference on Contemporary Computing (IC3)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Eighth International Conference on Contemporary Computing (IC3)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3.2015.7346656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Eighth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2015.7346656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

摘要

对于云数据中心来说,最大的问题是如何处理来自最终用户的数十亿个动态请求。为了高效地处理此类请求,需要在云节点之间均匀地分配负载。为了实现这一目标,过去几年提出了各种负载平衡方法。负载均衡策略旨在通过均衡和公平地分配云资源,最大限度地减少任务的响应时间,提高资源利用率,从而达到较高的用户满意度。传统的throttled负载平衡算法是一种很好的云计算负载平衡方法,因为它将传入的作业均匀地分配到vm中。但主要的缺点是,该算法在具有同构vm的环境中工作得很好,不考虑任务的特定资源需求,并且在每次任务来的时候都有扫描整个vm列表的额外开销。本文提出了一种基于集群的负载平衡算法来解决这些问题,该算法在异构节点环境下工作良好,考虑了任务的资源特定需求,并通过将机器划分为集群来减少扫描开销。实验结果表明,与现有的节流算法和改进的节流算法相比,我们的算法在等待时间、执行时间、周转时间和吞吐量方面都有更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cluster based load balancing in cloud computing
For a cloud datacenter the biggest issue is how to tackle billions of requests coming dynamically from the end users. To handle such requests efficiently and effectively, there is a need to distribute the load evenly among the cloud nodes. To achieve this goal, various load balancing approaches have been proposed in the past years. Load balancing strategies aim at achieving high user satisfaction by minimizing response time of the tasks and improving resource utilization through even and fair allocation of cloud resources. The traditional Throttled load balancing algorithm is a good approach for load balancing in cloud computing as it distributes the incoming jobs evenly among the VMs. But the major drawback is that this algorithm works well for environments with homogeneous VMS, does not considers the resource specific demands of the tasks and has additional overhead of scanning the entire list of VMs every time a task comes. In this paper, these issues have been addressed by proposing an algorithm Cluster based load balancing which works well in heterogeneous nodes environment, considers resource specific demands of the tasks and reduces scanning overhead by dividing the machines into clusters. Experimental results have shown that our algorithm gives better results in terms of waiting time, execution time, turnaround time and throughput as compared to existing throttled and modified throttled algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementing security technique on generic database Pruned feature space for metamorphic malware detection using Markov Blanket Mitigation of desynchronization attack during inter-eNodeB handover key management in LTE Task behaviour inputs to a heterogeneous multiprocessor scheduler Hand written digit recognition system for South Indian languages using artificial neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1