基于前拓扑框架的股票市场级联故障建模

N. Nguyen, M. Bui
{"title":"基于前拓扑框架的股票市场级联故障建模","authors":"N. Nguyen, M. Bui","doi":"10.1142/s2196888821500019","DOIUrl":null,"url":null,"abstract":"We introduce a computational framework, namely, a pretopological construct, for mining stock prices’ time series in order to expand a set of stocks by adding other stocks whose average correlations with the set are above a threshold. We increase the threshold with the set’s size to verify group impact in financial crises. This approach is tested by a consecutive expansion process started from a stock of Merrill Lynch & Co., and a consecutive contraction process of the rest. The test’s results and the comparison to graph theory show that our model and pretopology theory are helpful to study stock markets.","PeriodicalId":256649,"journal":{"name":"Vietnam. J. Comput. Sci.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Cascading Failures in Stock Markets by a Pretopological Framework\",\"authors\":\"N. Nguyen, M. Bui\",\"doi\":\"10.1142/s2196888821500019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a computational framework, namely, a pretopological construct, for mining stock prices’ time series in order to expand a set of stocks by adding other stocks whose average correlations with the set are above a threshold. We increase the threshold with the set’s size to verify group impact in financial crises. This approach is tested by a consecutive expansion process started from a stock of Merrill Lynch & Co., and a consecutive contraction process of the rest. The test’s results and the comparison to graph theory show that our model and pretopology theory are helpful to study stock markets.\",\"PeriodicalId\":256649,\"journal\":{\"name\":\"Vietnam. J. Comput. Sci.\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vietnam. J. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2196888821500019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam. J. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2196888821500019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一个计算框架,即一个预拓扑结构,用于挖掘股票价格的时间序列,以便通过添加与该集合的平均相关性高于阈值的其他股票来扩展一组股票。我们随着集合的规模增加阈值,以验证金融危机中的群体影响。这种方法得到了从美林股票开始的连续扩张过程和其他股票的连续收缩过程的检验。测试结果和与图论的比较表明,我们的模型和预拓扑理论对股票市场的研究是有帮助的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling Cascading Failures in Stock Markets by a Pretopological Framework
We introduce a computational framework, namely, a pretopological construct, for mining stock prices’ time series in order to expand a set of stocks by adding other stocks whose average correlations with the set are above a threshold. We increase the threshold with the set’s size to verify group impact in financial crises. This approach is tested by a consecutive expansion process started from a stock of Merrill Lynch & Co., and a consecutive contraction process of the rest. The test’s results and the comparison to graph theory show that our model and pretopology theory are helpful to study stock markets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving Arabic Sentiment Analysis Using LSTM Based on Word Embedding Models Synthetic Data Generation for Morphological Analyses of Histopathology Images with Deep Learning Models Generating Popularity-Aware Reciprocal Recommendations Using Siamese Bi-Directional Gated Recurrent Units Network Hyperparameter Optimization of a Parallelized LSTM for Time Series Prediction Natural Language Processing and Sentiment Analysis on Bangla Social Media Comments on Russia-Ukraine War Using Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1