基于参数估计的电动客车数学模型速度和横摆角速度响应优化

Mohammad Aditya Rafi Pratama, Aries Subiantoro
{"title":"基于参数估计的电动客车数学模型速度和横摆角速度响应优化","authors":"Mohammad Aditya Rafi Pratama, Aries Subiantoro","doi":"10.1109/AIMS52415.2021.9466080","DOIUrl":null,"url":null,"abstract":"The mathematical model of the vehicle is an important component of vehicle stability control research. Therefore, the right model is required to model an actual vehicle. In designing a vehicle model, the right parameter values are also needed to produce an optimal output response from the model. However, optimal response cannot be obtained when there is parameter value that are either unknown or cannot be measured directly. This paper proposed a parameter estimation approach using the Quasi–Newton and least squares methods to estimate the value of the unknown parameter. The output responses from the model with the estimated parameters will be compared with the output responses from the simulator used, and the level of accuracy and error of the estimation method will be analyzed. From the test results, it was found that the model with the estimated parameter values produces high accuracy of more than 85%. It is shown that the proposed estimation method can be used in estimating the parameters of a vehicle model and can produce an optimal output response.","PeriodicalId":299121,"journal":{"name":"2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Speed and Yaw Rate Response Optimization based on Parameter Estimation for Electrical Bus Mathematical Model\",\"authors\":\"Mohammad Aditya Rafi Pratama, Aries Subiantoro\",\"doi\":\"10.1109/AIMS52415.2021.9466080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mathematical model of the vehicle is an important component of vehicle stability control research. Therefore, the right model is required to model an actual vehicle. In designing a vehicle model, the right parameter values are also needed to produce an optimal output response from the model. However, optimal response cannot be obtained when there is parameter value that are either unknown or cannot be measured directly. This paper proposed a parameter estimation approach using the Quasi–Newton and least squares methods to estimate the value of the unknown parameter. The output responses from the model with the estimated parameters will be compared with the output responses from the simulator used, and the level of accuracy and error of the estimation method will be analyzed. From the test results, it was found that the model with the estimated parameter values produces high accuracy of more than 85%. It is shown that the proposed estimation method can be used in estimating the parameters of a vehicle model and can produce an optimal output response.\",\"PeriodicalId\":299121,\"journal\":{\"name\":\"2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIMS52415.2021.9466080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIMS52415.2021.9466080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

车辆数学模型是车辆稳定性控制研究的重要组成部分。因此,需要正确的模型来模拟实际的车辆。在设计车辆模型时,还需要正确的参数值来产生最优的模型输出响应。然而,当存在未知或无法直接测量的参数值时,就无法获得最优响应。本文提出了一种利用拟牛顿和最小二乘法估计未知参数值的参数估计方法。将具有估计参数的模型的输出响应与所使用的模拟器的输出响应进行比较,并分析估计方法的精度和误差水平。从测试结果来看,模型的估计参数值具有较高的精度,达到85%以上。结果表明,所提出的估计方法可用于车辆模型参数的估计,并能产生最优的输出响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Speed and Yaw Rate Response Optimization based on Parameter Estimation for Electrical Bus Mathematical Model
The mathematical model of the vehicle is an important component of vehicle stability control research. Therefore, the right model is required to model an actual vehicle. In designing a vehicle model, the right parameter values are also needed to produce an optimal output response from the model. However, optimal response cannot be obtained when there is parameter value that are either unknown or cannot be measured directly. This paper proposed a parameter estimation approach using the Quasi–Newton and least squares methods to estimate the value of the unknown parameter. The output responses from the model with the estimated parameters will be compared with the output responses from the simulator used, and the level of accuracy and error of the estimation method will be analyzed. From the test results, it was found that the model with the estimated parameter values produces high accuracy of more than 85%. It is shown that the proposed estimation method can be used in estimating the parameters of a vehicle model and can produce an optimal output response.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Feasibility Study of M2M/IoT Numbering Model in Indonesia Classification of sensorimotor cortex signals based on the task durations: an fNIRS-BCI study A genetic algorithm with an elitism replacement method for solving the nonfunctional web service composition under fuzzy QoS parameters The Effect of Wave Stirring Mechanism in Improving Heating Uniformity in Microwave Chamber For Fishing Industry A Survey of Emotion Recognition using Physiological Signal in Wearable Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1