Xiaohong W. Gao, R. Comley, Maleika Heenaye-Mamode Khan
{"title":"一种增强的深度学习架构用于CT肺部图像的结核类型分类","authors":"Xiaohong W. Gao, R. Comley, Maleika Heenaye-Mamode Khan","doi":"10.1109/ICIP40778.2020.9190815","DOIUrl":null,"url":null,"abstract":"In this work, an enhanced ResNet deep learning network, depth-ResNet, has been developed to classify the five types of Tuberculosis (TB) lung CT images. Depth-ResNet takes 3D CT images as a whole and processes the volumatic blocks along depth directions. It builds on the ResNet-50 model to obtain 2D features on each frame and injects depth information at each process block. As a result, the averaged accuracy for classification is 71.60% for depth-ResNet and 68.59% for ResNet. The datasets are collected from the ImageCLEF 2018 competition with 1008 training data in total, where the top reported accuracy was 42.27%.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An Enhanced Deep Learning Architecture for Classification of Tuberculosis Types From CT Lung Images\",\"authors\":\"Xiaohong W. Gao, R. Comley, Maleika Heenaye-Mamode Khan\",\"doi\":\"10.1109/ICIP40778.2020.9190815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, an enhanced ResNet deep learning network, depth-ResNet, has been developed to classify the five types of Tuberculosis (TB) lung CT images. Depth-ResNet takes 3D CT images as a whole and processes the volumatic blocks along depth directions. It builds on the ResNet-50 model to obtain 2D features on each frame and injects depth information at each process block. As a result, the averaged accuracy for classification is 71.60% for depth-ResNet and 68.59% for ResNet. The datasets are collected from the ImageCLEF 2018 competition with 1008 training data in total, where the top reported accuracy was 42.27%.\",\"PeriodicalId\":405734,\"journal\":{\"name\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP40778.2020.9190815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9190815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Enhanced Deep Learning Architecture for Classification of Tuberculosis Types From CT Lung Images
In this work, an enhanced ResNet deep learning network, depth-ResNet, has been developed to classify the five types of Tuberculosis (TB) lung CT images. Depth-ResNet takes 3D CT images as a whole and processes the volumatic blocks along depth directions. It builds on the ResNet-50 model to obtain 2D features on each frame and injects depth information at each process block. As a result, the averaged accuracy for classification is 71.60% for depth-ResNet and 68.59% for ResNet. The datasets are collected from the ImageCLEF 2018 competition with 1008 training data in total, where the top reported accuracy was 42.27%.