有效地同时定位操作多个磁珠

Yue Du, H. See, Qing‐Guo Wang, P. C. Chen
{"title":"有效地同时定位操作多个磁珠","authors":"Yue Du, H. See, Qing‐Guo Wang, P. C. Chen","doi":"10.1109/ICINFA.2016.7831801","DOIUrl":null,"url":null,"abstract":"The ability to simultaneously manipulate multiple magnetic particle (or beads) opens up new opportunities in conducting large-scale studies involving multiple biological objects. In this paper we present the development of two control schemes, namely PI control with an arbitrary control sequence and optimal control with a selected control sequence, for simultaneous position-regulation of magnetic beads under disturbances. A set of simulation studies were conducted in COMSOL to examine the effectiveness of the PI control, while a numerical simulation was carried out in MATLAB to demonstrate the feasibility of the proposed optimal control in dealing with a more complex situation that was modeled as a switched LQR problem. Particle Tracing Module for COMSOL was implemented to model the bead-fluid interaction during simulations. The results show the feasibility of both schemes in coordinated regulation of bead positions.","PeriodicalId":389619,"journal":{"name":"2016 IEEE International Conference on Information and Automation (ICIA)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effectively simultaneous localized manipulation of multiple magnetic beads\",\"authors\":\"Yue Du, H. See, Qing‐Guo Wang, P. C. Chen\",\"doi\":\"10.1109/ICINFA.2016.7831801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability to simultaneously manipulate multiple magnetic particle (or beads) opens up new opportunities in conducting large-scale studies involving multiple biological objects. In this paper we present the development of two control schemes, namely PI control with an arbitrary control sequence and optimal control with a selected control sequence, for simultaneous position-regulation of magnetic beads under disturbances. A set of simulation studies were conducted in COMSOL to examine the effectiveness of the PI control, while a numerical simulation was carried out in MATLAB to demonstrate the feasibility of the proposed optimal control in dealing with a more complex situation that was modeled as a switched LQR problem. Particle Tracing Module for COMSOL was implemented to model the bead-fluid interaction during simulations. The results show the feasibility of both schemes in coordinated regulation of bead positions.\",\"PeriodicalId\":389619,\"journal\":{\"name\":\"2016 IEEE International Conference on Information and Automation (ICIA)\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Information and Automation (ICIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICINFA.2016.7831801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Information and Automation (ICIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2016.7831801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

同时操纵多个磁性粒子(或磁珠)的能力为开展涉及多个生物对象的大规模研究开辟了新的机会。本文提出了两种控制方案,即具有任意控制序列的PI控制和具有选定控制序列的最优控制,用于磁珠在扰动下的同步位置调节。在COMSOL中进行了一系列仿真研究,以检验PI控制的有效性,并在MATLAB中进行了数值仿真,以证明所提出的最优控制在处理更复杂的情况(建模为切换LQR问题)时的可行性。在模拟过程中,采用COMSOL的粒子跟踪模块对颗粒-流体相互作用进行建模。结果表明,两种方案在协调调节水头位置方面是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effectively simultaneous localized manipulation of multiple magnetic beads
The ability to simultaneously manipulate multiple magnetic particle (or beads) opens up new opportunities in conducting large-scale studies involving multiple biological objects. In this paper we present the development of two control schemes, namely PI control with an arbitrary control sequence and optimal control with a selected control sequence, for simultaneous position-regulation of magnetic beads under disturbances. A set of simulation studies were conducted in COMSOL to examine the effectiveness of the PI control, while a numerical simulation was carried out in MATLAB to demonstrate the feasibility of the proposed optimal control in dealing with a more complex situation that was modeled as a switched LQR problem. Particle Tracing Module for COMSOL was implemented to model the bead-fluid interaction during simulations. The results show the feasibility of both schemes in coordinated regulation of bead positions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Morphological component decomposition combined with compressed sensing for image compression An adaptive nonlinear iterative sliding mode controller based on heuristic critic algorithm Analysis of static and dynamic real-time precise point positioning and precision based on SSR correction High-performance motion control of an XY stage for complicated contours with BFC trajectory planning An improved swarm intelligence algorithm for multirate systems state estimation using the canonical state space models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1