基于非均匀跳变的非回溯随机漫步估计大型网络的度分布

Sirinda Palahan
{"title":"基于非均匀跳变的非回溯随机漫步估计大型网络的度分布","authors":"Sirinda Palahan","doi":"10.1109/EIT.2015.7293414","DOIUrl":null,"url":null,"abstract":"This work presents a hybrid sampling method that mixes a non-backtracking random walk and a variation of random walk with jump. We show that the proposed method combines the strengths of both random walks. In particular, the walker of our method will not backtrack to the previously visited vertex so it is likely to produce less number of duplicate samples than the simple random walk. Moreover, the walker's ability to jump ensures that it will explore a network faster. We applied our method on six real world online networks where some of the networks contain millions of vertices. The experimental results show that our method outperformed a non-backtracking random walk and a random walk with jump on estimating degree distributions.","PeriodicalId":415614,"journal":{"name":"2015 IEEE International Conference on Electro/Information Technology (EIT)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimating degree distributions of large networks using non-backtracking random walk with non-uniform jump\",\"authors\":\"Sirinda Palahan\",\"doi\":\"10.1109/EIT.2015.7293414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a hybrid sampling method that mixes a non-backtracking random walk and a variation of random walk with jump. We show that the proposed method combines the strengths of both random walks. In particular, the walker of our method will not backtrack to the previously visited vertex so it is likely to produce less number of duplicate samples than the simple random walk. Moreover, the walker's ability to jump ensures that it will explore a network faster. We applied our method on six real world online networks where some of the networks contain millions of vertices. The experimental results show that our method outperformed a non-backtracking random walk and a random walk with jump on estimating degree distributions.\",\"PeriodicalId\":415614,\"journal\":{\"name\":\"2015 IEEE International Conference on Electro/Information Technology (EIT)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Electro/Information Technology (EIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIT.2015.7293414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Electro/Information Technology (EIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2015.7293414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种混合非回溯随机行走和带跳跃的随机行走变体的混合抽样方法。我们表明,所提出的方法结合了两种随机漫步的优势。特别是,我们的方法的步行者不会回溯到之前访问的顶点,所以它可能比简单的随机漫步产生更少的重复样本。此外,步行者的跳跃能力确保了它能更快地探索网络。我们将我们的方法应用于六个真实的在线网络,其中一些网络包含数百万个顶点。实验结果表明,该方法在估计度分布上优于非回溯随机漫步和带跳跃随机漫步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimating degree distributions of large networks using non-backtracking random walk with non-uniform jump
This work presents a hybrid sampling method that mixes a non-backtracking random walk and a variation of random walk with jump. We show that the proposed method combines the strengths of both random walks. In particular, the walker of our method will not backtrack to the previously visited vertex so it is likely to produce less number of duplicate samples than the simple random walk. Moreover, the walker's ability to jump ensures that it will explore a network faster. We applied our method on six real world online networks where some of the networks contain millions of vertices. The experimental results show that our method outperformed a non-backtracking random walk and a random walk with jump on estimating degree distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Space time block code for four time slots and two transmit antennas Social routing: A novel routing protocol for delay tolerant network based on dynamic connectivity Radiation performance and Specific Absorption Rate (SAR) analysis of a compact dual band balanced antenna Design of half bridge LLC resonant converter using synchronous rectifier Frame distance array algorithm parameter tune-up for TIMIT corpus automatic speech segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1