基于引文的DEA从专利文本数据中选择核心词

Shigeaki Onoda, K. Okuhara
{"title":"基于引文的DEA从专利文本数据中选择核心词","authors":"Shigeaki Onoda, K. Okuhara","doi":"10.1109/ICAIIC.2019.8668999","DOIUrl":null,"url":null,"abstract":"The web includes enormous data such as patents. The purpose of this research finds the rule of textual patent data and creates new model. Hence, we suggest new weighted method using DEA to handle unstructured data like patent. Our proposed method is advantageous because this considers the value of the patent compared with TF-IDF and other weighted methods. Using suggested method, we probe new text-mining in the field of patent.","PeriodicalId":273383,"journal":{"name":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selection of Core Words from Textual Patent Data with DEA based on Citation\",\"authors\":\"Shigeaki Onoda, K. Okuhara\",\"doi\":\"10.1109/ICAIIC.2019.8668999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The web includes enormous data such as patents. The purpose of this research finds the rule of textual patent data and creates new model. Hence, we suggest new weighted method using DEA to handle unstructured data like patent. Our proposed method is advantageous because this considers the value of the patent compared with TF-IDF and other weighted methods. Using suggested method, we probe new text-mining in the field of patent.\",\"PeriodicalId\":273383,\"journal\":{\"name\":\"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIIC.2019.8668999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC.2019.8668999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

网络包含大量的数据,比如专利。本研究的目的在于发现专利文本数据的规律,建立新的模型。因此,我们提出了一种新的加权DEA方法来处理专利等非结构化数据。我们提出的方法是有利的,因为与TF-IDF和其他加权方法相比,它考虑了专利的价值。利用本文提出的方法,对专利领域的文本挖掘进行了探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Selection of Core Words from Textual Patent Data with DEA based on Citation
The web includes enormous data such as patents. The purpose of this research finds the rule of textual patent data and creates new model. Hence, we suggest new weighted method using DEA to handle unstructured data like patent. Our proposed method is advantageous because this considers the value of the patent compared with TF-IDF and other weighted methods. Using suggested method, we probe new text-mining in the field of patent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stock Prices Prediction using the Title of Newspaper Articles with Korean Natural Language Processing Deep learning based decomposition of brain networks Simulation on Delay of Several Random Access Schemes A Machine-Learning-Based Channel Assignment Algorithm for IoT The Properties of mode prediction using mean root error for regularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1