{"title":"基于副本对称性的压缩感知多用户检测性能逼近","authors":"Yalei Ji, C. Bockelmann, A. Dekorsy","doi":"10.1109/VTCFall.2017.8287960","DOIUrl":null,"url":null,"abstract":"Compressive Sensing Multi-User Detection (CS-MUD) is a recently developed physical (PHY) layer technique [1] to support Massive Machine Communication (MMC) in the next generation of mobile communication (5G) [2], [3]. CS-MUD has been investigated in joint Medium Access Control (MAC) and PHY layer protocol design [4], [5] but the lack of analytical performance description makes the joint design cumbersome. To expand the joint MAC- and PHY-layer protocol design considering a larger parameter space and to gain insights in the cross-layer optimization, we present a performance abstraction for CS-MUD to avoid extensive numerical simulation. Within this work, we exploit a low-complexity approach to approximate the performance of CS-MUD through the Replica Symmetry in large system analysis [6].","PeriodicalId":375803,"journal":{"name":"2017 IEEE 86th Vehicular Technology Conference (VTC-Fall)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance Approximation of Compressive Sensing Multi-User Detection via Replica Symmetry\",\"authors\":\"Yalei Ji, C. Bockelmann, A. Dekorsy\",\"doi\":\"10.1109/VTCFall.2017.8287960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressive Sensing Multi-User Detection (CS-MUD) is a recently developed physical (PHY) layer technique [1] to support Massive Machine Communication (MMC) in the next generation of mobile communication (5G) [2], [3]. CS-MUD has been investigated in joint Medium Access Control (MAC) and PHY layer protocol design [4], [5] but the lack of analytical performance description makes the joint design cumbersome. To expand the joint MAC- and PHY-layer protocol design considering a larger parameter space and to gain insights in the cross-layer optimization, we present a performance abstraction for CS-MUD to avoid extensive numerical simulation. Within this work, we exploit a low-complexity approach to approximate the performance of CS-MUD through the Replica Symmetry in large system analysis [6].\",\"PeriodicalId\":375803,\"journal\":{\"name\":\"2017 IEEE 86th Vehicular Technology Conference (VTC-Fall)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 86th Vehicular Technology Conference (VTC-Fall)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTCFall.2017.8287960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 86th Vehicular Technology Conference (VTC-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTCFall.2017.8287960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance Approximation of Compressive Sensing Multi-User Detection via Replica Symmetry
Compressive Sensing Multi-User Detection (CS-MUD) is a recently developed physical (PHY) layer technique [1] to support Massive Machine Communication (MMC) in the next generation of mobile communication (5G) [2], [3]. CS-MUD has been investigated in joint Medium Access Control (MAC) and PHY layer protocol design [4], [5] but the lack of analytical performance description makes the joint design cumbersome. To expand the joint MAC- and PHY-layer protocol design considering a larger parameter space and to gain insights in the cross-layer optimization, we present a performance abstraction for CS-MUD to avoid extensive numerical simulation. Within this work, we exploit a low-complexity approach to approximate the performance of CS-MUD through the Replica Symmetry in large system analysis [6].