通过深度学习方法将夜间图像转换为白天图像

N. Capece, U. Erra, Raffaele Scolamiero
{"title":"通过深度学习方法将夜间图像转换为白天图像","authors":"N. Capece, U. Erra, Raffaele Scolamiero","doi":"10.1109/iV.2017.16","DOIUrl":null,"url":null,"abstract":"This paper examines the application of a deep learning approach to converting night-time images to day-time images. In particular, we show that a convolutional neural network enables the simulation of artificial and ambient light on images. In this paper, we illustrate the design of the deep neural network and some preliminary results on a real indoor environment and two virtual environments rendered with a 3D graphics engine. The experimental results are encouraging and confirm that a convolutional neural network is an interesting approach in the fields of photo-editing and digital image postprocessing.","PeriodicalId":410876,"journal":{"name":"2017 21st International Conference Information Visualisation (IV)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Converting Night-Time Images to Day-Time Images through a Deep Learning Approach\",\"authors\":\"N. Capece, U. Erra, Raffaele Scolamiero\",\"doi\":\"10.1109/iV.2017.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper examines the application of a deep learning approach to converting night-time images to day-time images. In particular, we show that a convolutional neural network enables the simulation of artificial and ambient light on images. In this paper, we illustrate the design of the deep neural network and some preliminary results on a real indoor environment and two virtual environments rendered with a 3D graphics engine. The experimental results are encouraging and confirm that a convolutional neural network is an interesting approach in the fields of photo-editing and digital image postprocessing.\",\"PeriodicalId\":410876,\"journal\":{\"name\":\"2017 21st International Conference Information Visualisation (IV)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 21st International Conference Information Visualisation (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iV.2017.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 21st International Conference Information Visualisation (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iV.2017.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文研究了将夜间图像转换为白天图像的深度学习方法的应用。特别是,我们展示了卷积神经网络能够在图像上模拟人工光和环境光。在本文中,我们举例说明了深度神经网络的设计,并在一个真实的室内环境和两个用三维图形引擎渲染的虚拟环境上取得了一些初步结果。实验结果令人鼓舞,并证实了卷积神经网络在照片编辑和数字图像后处理领域是一种有趣的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Converting Night-Time Images to Day-Time Images through a Deep Learning Approach
This paper examines the application of a deep learning approach to converting night-time images to day-time images. In particular, we show that a convolutional neural network enables the simulation of artificial and ambient light on images. In this paper, we illustrate the design of the deep neural network and some preliminary results on a real indoor environment and two virtual environments rendered with a 3D graphics engine. The experimental results are encouraging and confirm that a convolutional neural network is an interesting approach in the fields of photo-editing and digital image postprocessing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Haptic User Interface to Assess the Mobility of the Newborn's Neck Deciphering Gene Sets Annotations with Ontology Based Visualization Acceptance and Usability of Interactive Infographics in Online Newspapers CHR-Graph: A Platform for Animating Tree and Graph Algorithms The Role of Perspective Cues in RSVP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1