几何旅行规划

S. Edelkamp, S. Jabbar, Thomas Willhalm
{"title":"几何旅行规划","authors":"S. Edelkamp, S. Jabbar, Thomas Willhalm","doi":"10.1109/ITSC.2003.1252629","DOIUrl":null,"url":null,"abstract":"This paper provides a novel approach for optimal route planning making efficient use of the underlying geometrical structure. It combines classical AI exploration with computational geometry. Given a set of global positioning system (GPS) trajectories, the input is refined by geometric filtering and rounding algorithms. For constructing the graph and the according point localization structure, fast scan-line and divide-and-conquer algorithms are applied. For speeding up the optimal on-line search algorithms, the geometrical structure of the inferred weighted graph is exploited in two ways. The graph is compressed while retaining the original information for unfolding resulting shortest paths. It is then annotated by lower bound refined topographic information; for example by the bounding boxes of all shortest paths that start with a given edge. The on-line planning system GPS-ROUTE implements the above techniques and provides a client-server Web interface to answer series of shortest-path or shortest-time queries.","PeriodicalId":123155,"journal":{"name":"Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Geometric travel planning\",\"authors\":\"S. Edelkamp, S. Jabbar, Thomas Willhalm\",\"doi\":\"10.1109/ITSC.2003.1252629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a novel approach for optimal route planning making efficient use of the underlying geometrical structure. It combines classical AI exploration with computational geometry. Given a set of global positioning system (GPS) trajectories, the input is refined by geometric filtering and rounding algorithms. For constructing the graph and the according point localization structure, fast scan-line and divide-and-conquer algorithms are applied. For speeding up the optimal on-line search algorithms, the geometrical structure of the inferred weighted graph is exploited in two ways. The graph is compressed while retaining the original information for unfolding resulting shortest paths. It is then annotated by lower bound refined topographic information; for example by the bounding boxes of all shortest paths that start with a given edge. The on-line planning system GPS-ROUTE implements the above techniques and provides a client-server Web interface to answer series of shortest-path or shortest-time queries.\",\"PeriodicalId\":123155,\"journal\":{\"name\":\"Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2003.1252629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2003.1252629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提供了一种有效利用底层几何结构的优化路线规划的新方法。它将经典的AI探索与计算几何相结合。给定一组全球定位系统(GPS)轨迹,通过几何滤波和舍入算法对输入进行细化。为了构造图形和相应的点定位结构,采用了快速扫描线和分治算法。为了加快最优在线搜索算法的速度,我们从两方面利用了推断出的加权图的几何结构。图被压缩,同时保留原始信息以展开生成的最短路径。然后用下界精细地形信息对其进行标注;例如,从给定边开始的所有最短路径的边界框。在线规划系统GPS-ROUTE实现了上述技术,并提供了一个客户端-服务器Web接口来回答一系列最短路径或最短时间的查询。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Geometric travel planning
This paper provides a novel approach for optimal route planning making efficient use of the underlying geometrical structure. It combines classical AI exploration with computational geometry. Given a set of global positioning system (GPS) trajectories, the input is refined by geometric filtering and rounding algorithms. For constructing the graph and the according point localization structure, fast scan-line and divide-and-conquer algorithms are applied. For speeding up the optimal on-line search algorithms, the geometrical structure of the inferred weighted graph is exploited in two ways. The graph is compressed while retaining the original information for unfolding resulting shortest paths. It is then annotated by lower bound refined topographic information; for example by the bounding boxes of all shortest paths that start with a given edge. The on-line planning system GPS-ROUTE implements the above techniques and provides a client-server Web interface to answer series of shortest-path or shortest-time queries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study on ship manoeuvering control based on adaptive inverse control technology Formal design and analysis of FMS controller The application of spatial data mining in railway geographic information systems Dynamic vehicle routing problem using hybrid ant system Dynamic link travel time model in dynamic traffic assignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1