Patrícia Mariotto Mozzaquatro Chicon, Fabrícia Roos-Frantz, R. Z. Frantz, Sandro Sawicki
{"title":"大数据场景数据挖掘的系统映射研究","authors":"Patrícia Mariotto Mozzaquatro Chicon, Fabrícia Roos-Frantz, R. Z. Frantz, Sandro Sawicki","doi":"10.33053/gedecon.v9i1.506","DOIUrl":null,"url":null,"abstract":"O volume de dados produzidos tem crescido em larga escala nos últimos anos. Esses dados são de diferentes fontes e diversificados formatos, caracterizando as principais dimensões do Big Data: grande volume, alta velocidade de crescimento e grande variedade de dados. O maior desafio é como gerar informação de qualidade para inferir insights significativos de tais dados variados e grandes. A Mineração de Dados é o processo de identificar, em dados, padrões válidos, novos e potencialmente úteis. No entanto, a infraestrutura de tecnologia da informação tradicional não é capaz de atender as demandas deste novo cenário. O termo atualmente conhecido como Big Data Mining refere-se à extração de informação a partir de grandes bases de dados. Uma questão a ser respondida é como a comunidade científica está abordando o processo de Big Data Mining? Seria válido identificar quais tarefas, métodos e algoritmos vêm sendo aplicados para extrair conhecimento neste contexto. Este artigo tem como objetivo identificar na literatura os trabalhos de pesquisa já realizados no contexto do Big Data Mining. Buscou-se identificar as áreas mais abordadas, os tipos de problemas tratados, as tarefas aplicadas na extração de conhecimento, os métodos aplicados para a realização das tarefas, os algoritmos para a implementação dos métodos, os tipos de dados que vêm sendo minerados, fonte e estrutura dos mesmos. Um estudo de mapeamento sistemático foi conduzido, foram examinados 78 estudos primários. Os resultados obtidos apresentam uma compreensão panorâmica da área investigada, revelando as principais tarefas, métodos e algoritmos aplicados no Big Data Mining.","PeriodicalId":445166,"journal":{"name":"Revista GEDECON - Gestão e Desenvolvimento em Contexto","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UM ESTUDO DE MAPEAMENTO SISTEMÁTICO DA MINERAÇÃO DE DADOS PARA CENÁRIOS DE BIG DATA\",\"authors\":\"Patrícia Mariotto Mozzaquatro Chicon, Fabrícia Roos-Frantz, R. Z. Frantz, Sandro Sawicki\",\"doi\":\"10.33053/gedecon.v9i1.506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"O volume de dados produzidos tem crescido em larga escala nos últimos anos. Esses dados são de diferentes fontes e diversificados formatos, caracterizando as principais dimensões do Big Data: grande volume, alta velocidade de crescimento e grande variedade de dados. O maior desafio é como gerar informação de qualidade para inferir insights significativos de tais dados variados e grandes. A Mineração de Dados é o processo de identificar, em dados, padrões válidos, novos e potencialmente úteis. No entanto, a infraestrutura de tecnologia da informação tradicional não é capaz de atender as demandas deste novo cenário. O termo atualmente conhecido como Big Data Mining refere-se à extração de informação a partir de grandes bases de dados. Uma questão a ser respondida é como a comunidade científica está abordando o processo de Big Data Mining? Seria válido identificar quais tarefas, métodos e algoritmos vêm sendo aplicados para extrair conhecimento neste contexto. Este artigo tem como objetivo identificar na literatura os trabalhos de pesquisa já realizados no contexto do Big Data Mining. Buscou-se identificar as áreas mais abordadas, os tipos de problemas tratados, as tarefas aplicadas na extração de conhecimento, os métodos aplicados para a realização das tarefas, os algoritmos para a implementação dos métodos, os tipos de dados que vêm sendo minerados, fonte e estrutura dos mesmos. Um estudo de mapeamento sistemático foi conduzido, foram examinados 78 estudos primários. Os resultados obtidos apresentam uma compreensão panorâmica da área investigada, revelando as principais tarefas, métodos e algoritmos aplicados no Big Data Mining.\",\"PeriodicalId\":445166,\"journal\":{\"name\":\"Revista GEDECON - Gestão e Desenvolvimento em Contexto\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista GEDECON - Gestão e Desenvolvimento em Contexto\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33053/gedecon.v9i1.506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista GEDECON - Gestão e Desenvolvimento em Contexto","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33053/gedecon.v9i1.506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
UM ESTUDO DE MAPEAMENTO SISTEMÁTICO DA MINERAÇÃO DE DADOS PARA CENÁRIOS DE BIG DATA
O volume de dados produzidos tem crescido em larga escala nos últimos anos. Esses dados são de diferentes fontes e diversificados formatos, caracterizando as principais dimensões do Big Data: grande volume, alta velocidade de crescimento e grande variedade de dados. O maior desafio é como gerar informação de qualidade para inferir insights significativos de tais dados variados e grandes. A Mineração de Dados é o processo de identificar, em dados, padrões válidos, novos e potencialmente úteis. No entanto, a infraestrutura de tecnologia da informação tradicional não é capaz de atender as demandas deste novo cenário. O termo atualmente conhecido como Big Data Mining refere-se à extração de informação a partir de grandes bases de dados. Uma questão a ser respondida é como a comunidade científica está abordando o processo de Big Data Mining? Seria válido identificar quais tarefas, métodos e algoritmos vêm sendo aplicados para extrair conhecimento neste contexto. Este artigo tem como objetivo identificar na literatura os trabalhos de pesquisa já realizados no contexto do Big Data Mining. Buscou-se identificar as áreas mais abordadas, os tipos de problemas tratados, as tarefas aplicadas na extração de conhecimento, os métodos aplicados para a realização das tarefas, os algoritmos para a implementação dos métodos, os tipos de dados que vêm sendo minerados, fonte e estrutura dos mesmos. Um estudo de mapeamento sistemático foi conduzido, foram examinados 78 estudos primários. Os resultados obtidos apresentam uma compreensão panorâmica da área investigada, revelando as principais tarefas, métodos e algoritmos aplicados no Big Data Mining.