利用模拟退火混合鲸鱼优化算法增强磁球悬浮系统性能

Serdar Ekinci, A. Demirören, B. Hekimoğlu, Erdal Eker
{"title":"利用模拟退火混合鲸鱼优化算法增强磁球悬浮系统性能","authors":"Serdar Ekinci, A. Demirören, B. Hekimoğlu, Erdal Eker","doi":"10.1109/ISMSIT.2019.8932787","DOIUrl":null,"url":null,"abstract":"In this study, an efficient tuning method based on hybrid whale optimization algorithm with simulated annealing (WOA-SA) for optimum parameters setting of proportional + integral + derivative (PID) controller for magnetic ball suspension system is presented. High quality solutions can be achieved via WOA-SA algorithm with balanced local and global search capabilities. Comparative analyzes were conducted to evaluate the performance of the WOA-SA tuned PID controller designed to increase the stability profile of the system. The original whale optimization algorithm (WOA) and simulated annealing (SA) algorithm were used for performance comparison of the hybrid algorithm. The graphical and numerical results obtained from the convergence curve, transient response analysis and frequency response analysis showed that the proposed WOA-SA tuned system has a more stable structure. The essence and novelty of this study is the successful implementation of the proposed hybrid algorithm-based controller design procedure to the magnetic ball suspension system.","PeriodicalId":169791,"journal":{"name":"2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Performance Enhancement of Magnetic Ball Suspension System Using Hybrid Whale Optimization Algorithm with Simulated Annealing\",\"authors\":\"Serdar Ekinci, A. Demirören, B. Hekimoğlu, Erdal Eker\",\"doi\":\"10.1109/ISMSIT.2019.8932787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, an efficient tuning method based on hybrid whale optimization algorithm with simulated annealing (WOA-SA) for optimum parameters setting of proportional + integral + derivative (PID) controller for magnetic ball suspension system is presented. High quality solutions can be achieved via WOA-SA algorithm with balanced local and global search capabilities. Comparative analyzes were conducted to evaluate the performance of the WOA-SA tuned PID controller designed to increase the stability profile of the system. The original whale optimization algorithm (WOA) and simulated annealing (SA) algorithm were used for performance comparison of the hybrid algorithm. The graphical and numerical results obtained from the convergence curve, transient response analysis and frequency response analysis showed that the proposed WOA-SA tuned system has a more stable structure. The essence and novelty of this study is the successful implementation of the proposed hybrid algorithm-based controller design procedure to the magnetic ball suspension system.\",\"PeriodicalId\":169791,\"journal\":{\"name\":\"2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMSIT.2019.8932787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMSIT.2019.8932787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于模拟退火混合鲸鱼优化算法(WOA-SA)的磁球悬浮系统比例+积分+微分(PID)控制器最优参数整定方法。通过平衡局部和全局搜索能力的WOA-SA算法可以获得高质量的解。对比分析了WOA-SA自整定PID控制器的性能,提高了系统的稳定性。采用原始鲸鱼优化算法(WOA)和模拟退火算法(SA)对混合算法进行性能比较。收敛曲线、暂态响应分析和频响分析的图形和数值结果表明,所提出的WOA-SA调谐系统具有更稳定的结构。本研究的核心和新颖之处在于将所提出的基于混合算法的控制器设计过程成功地实现到磁球悬浮系统中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Enhancement of Magnetic Ball Suspension System Using Hybrid Whale Optimization Algorithm with Simulated Annealing
In this study, an efficient tuning method based on hybrid whale optimization algorithm with simulated annealing (WOA-SA) for optimum parameters setting of proportional + integral + derivative (PID) controller for magnetic ball suspension system is presented. High quality solutions can be achieved via WOA-SA algorithm with balanced local and global search capabilities. Comparative analyzes were conducted to evaluate the performance of the WOA-SA tuned PID controller designed to increase the stability profile of the system. The original whale optimization algorithm (WOA) and simulated annealing (SA) algorithm were used for performance comparison of the hybrid algorithm. The graphical and numerical results obtained from the convergence curve, transient response analysis and frequency response analysis showed that the proposed WOA-SA tuned system has a more stable structure. The essence and novelty of this study is the successful implementation of the proposed hybrid algorithm-based controller design procedure to the magnetic ball suspension system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning Applications in Disease Surveillance Open-Source Web-Based Software for Performing Permutation Tests Graph-Based Representation of Customer Reviews for Online Stores Aynı Şartlar Altında Farklı Üretici Çekişmeli Ağların Karşılaştırılması Keratinocyte Carcinoma Detection via Convolutional Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1