{"title":"无线传感器网络中信道使用优化的块确认机制","authors":"Norberto Barroca, F. Velez, P. Chatzimisios","doi":"10.1109/PIMRC.2013.6666391","DOIUrl":null,"url":null,"abstract":"One of the fundamental reasons for the IEEE 802.15.4 standard Medium Access Control (MAC) inefficiency is overhead. The current paper proposes and analyses the Sensor Block Acknowledgment MAC (SBACK-MAC) protocol, a new innovative protocol that allows the aggregation of several acknowledgment responses in one special BACK Response packet. Two different solutions are addressed. The first one considers the SBACK-MAC protocol in the presence of BACK Request (concatenation) while the second one considers the SBACK-MAC in the absence of BACK Request (piggyback). The proposed solutions address a distributed scenario with single-destination and single-rate frame aggregation. The throughput and delay performance is mathematically derived under ideal conditions (a channel environment with no transmission errors). The proposed schemes are compared against the basic access mode of IEEE 802.15.4 through extensive simulations by employing the OM-NET++ simulator. We demonstrate that the network performance is significantly improved in terms of throughput and end-to-end delay.","PeriodicalId":210993,"journal":{"name":"2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Block acknowledgment mechanisms for the optimization of channel use in wireless sensor networks\",\"authors\":\"Norberto Barroca, F. Velez, P. Chatzimisios\",\"doi\":\"10.1109/PIMRC.2013.6666391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the fundamental reasons for the IEEE 802.15.4 standard Medium Access Control (MAC) inefficiency is overhead. The current paper proposes and analyses the Sensor Block Acknowledgment MAC (SBACK-MAC) protocol, a new innovative protocol that allows the aggregation of several acknowledgment responses in one special BACK Response packet. Two different solutions are addressed. The first one considers the SBACK-MAC protocol in the presence of BACK Request (concatenation) while the second one considers the SBACK-MAC in the absence of BACK Request (piggyback). The proposed solutions address a distributed scenario with single-destination and single-rate frame aggregation. The throughput and delay performance is mathematically derived under ideal conditions (a channel environment with no transmission errors). The proposed schemes are compared against the basic access mode of IEEE 802.15.4 through extensive simulations by employing the OM-NET++ simulator. We demonstrate that the network performance is significantly improved in terms of throughput and end-to-end delay.\",\"PeriodicalId\":210993,\"journal\":{\"name\":\"2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIMRC.2013.6666391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC.2013.6666391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Block acknowledgment mechanisms for the optimization of channel use in wireless sensor networks
One of the fundamental reasons for the IEEE 802.15.4 standard Medium Access Control (MAC) inefficiency is overhead. The current paper proposes and analyses the Sensor Block Acknowledgment MAC (SBACK-MAC) protocol, a new innovative protocol that allows the aggregation of several acknowledgment responses in one special BACK Response packet. Two different solutions are addressed. The first one considers the SBACK-MAC protocol in the presence of BACK Request (concatenation) while the second one considers the SBACK-MAC in the absence of BACK Request (piggyback). The proposed solutions address a distributed scenario with single-destination and single-rate frame aggregation. The throughput and delay performance is mathematically derived under ideal conditions (a channel environment with no transmission errors). The proposed schemes are compared against the basic access mode of IEEE 802.15.4 through extensive simulations by employing the OM-NET++ simulator. We demonstrate that the network performance is significantly improved in terms of throughput and end-to-end delay.