为什么三角形枚举的简单算法在现实世界中工作?

Jonathan W. Berry, Luke Fostvedt, D. Nordman, C. Phillips, C. Seshadhri, Alyson G. Wilson
{"title":"为什么三角形枚举的简单算法在现实世界中工作?","authors":"Jonathan W. Berry, Luke Fostvedt, D. Nordman, C. Phillips, C. Seshadhri, Alyson G. Wilson","doi":"10.1145/2554797.2554819","DOIUrl":null,"url":null,"abstract":"Triangle enumeration is a fundamental graph operation. Despite the lack of provably efficient (linear, or slightly super-linear) worst-case algorithms for this problem, practitioners run simple, efficient heuristics to find all triangles in graphs with millions of vertices. How are these heuristics exploiting the structure of these special graphs to provide major speedups in running time? We study one of the most prevalent algorithms used by practitioners. A trivial algorithm enumerates all paths of length 2, and checks if each such path is incident to a triangle. A good heuristic is to enumerate only those paths of length 2 where the middle vertex has the lowest degree. It is easily implemented and is empirically known to give remarkable speedups over the trivial algorithm. We study the behavior of this algorithm over graphs with heavy-tailed degree distributions, a defining feature of real-world graphs. The erased configuration model (ECM) efficiently generates a graph with asymptotically (almost) any desired degree sequence. We show that the expected running time of this algorithm over the distribution of graphs created by the ECM is controlled by the l4/3-norm of the degree sequence. As a corollary of our main theorem, we prove expected linear-time performance for degree sequences following a power law with exponent α ≥ 7/3, and non-trivial speedup whenever α ∈ (2,3).","PeriodicalId":382856,"journal":{"name":"Proceedings of the 5th conference on Innovations in theoretical computer science","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Why do simple algorithms for triangle enumeration work in the real world?\",\"authors\":\"Jonathan W. Berry, Luke Fostvedt, D. Nordman, C. Phillips, C. Seshadhri, Alyson G. Wilson\",\"doi\":\"10.1145/2554797.2554819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Triangle enumeration is a fundamental graph operation. Despite the lack of provably efficient (linear, or slightly super-linear) worst-case algorithms for this problem, practitioners run simple, efficient heuristics to find all triangles in graphs with millions of vertices. How are these heuristics exploiting the structure of these special graphs to provide major speedups in running time? We study one of the most prevalent algorithms used by practitioners. A trivial algorithm enumerates all paths of length 2, and checks if each such path is incident to a triangle. A good heuristic is to enumerate only those paths of length 2 where the middle vertex has the lowest degree. It is easily implemented and is empirically known to give remarkable speedups over the trivial algorithm. We study the behavior of this algorithm over graphs with heavy-tailed degree distributions, a defining feature of real-world graphs. The erased configuration model (ECM) efficiently generates a graph with asymptotically (almost) any desired degree sequence. We show that the expected running time of this algorithm over the distribution of graphs created by the ECM is controlled by the l4/3-norm of the degree sequence. As a corollary of our main theorem, we prove expected linear-time performance for degree sequences following a power law with exponent α ≥ 7/3, and non-trivial speedup whenever α ∈ (2,3).\",\"PeriodicalId\":382856,\"journal\":{\"name\":\"Proceedings of the 5th conference on Innovations in theoretical computer science\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th conference on Innovations in theoretical computer science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2554797.2554819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th conference on Innovations in theoretical computer science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2554797.2554819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

三角枚举是一种基本的图运算。尽管对于这个问题缺乏可证明有效的(线性的,或者稍微超线性的)最坏情况算法,从业者还是运行简单、有效的启发式方法来找到具有数百万个顶点的图中的所有三角形。这些启发式方法如何利用这些特殊图的结构来提供运行时间上的主要加速?我们研究从业者使用的最流行的算法之一。一个简单的算法枚举长度为2的所有路径,并检查每个这样的路径是否与一个三角形相关。一个很好的启发式方法是只列举那些长度为2且中间顶点具有最低度的路径。它很容易实现,并且在经验上已知它比平凡的算法提供显着的加速。我们研究了该算法在具有重尾度分布的图上的行为,重尾度分布是现实世界图的一个定义特征。擦除组态模型(ECM)有效地生成具有渐近(几乎)任意期望阶序列的图。我们证明了该算法在ECM生成的图的分布上的期望运行时间是由度序列的14 /3范数控制的。作为主要定理的一个推论,我们证明了指数α≥7/3的幂律阶序列的期望线性时间性能,以及当α∈(2,3)时的非平凡加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Why do simple algorithms for triangle enumeration work in the real world?
Triangle enumeration is a fundamental graph operation. Despite the lack of provably efficient (linear, or slightly super-linear) worst-case algorithms for this problem, practitioners run simple, efficient heuristics to find all triangles in graphs with millions of vertices. How are these heuristics exploiting the structure of these special graphs to provide major speedups in running time? We study one of the most prevalent algorithms used by practitioners. A trivial algorithm enumerates all paths of length 2, and checks if each such path is incident to a triangle. A good heuristic is to enumerate only those paths of length 2 where the middle vertex has the lowest degree. It is easily implemented and is empirically known to give remarkable speedups over the trivial algorithm. We study the behavior of this algorithm over graphs with heavy-tailed degree distributions, a defining feature of real-world graphs. The erased configuration model (ECM) efficiently generates a graph with asymptotically (almost) any desired degree sequence. We show that the expected running time of this algorithm over the distribution of graphs created by the ECM is controlled by the l4/3-norm of the degree sequence. As a corollary of our main theorem, we prove expected linear-time performance for degree sequences following a power law with exponent α ≥ 7/3, and non-trivial speedup whenever α ∈ (2,3).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the automorphism groups of strongly regular graphs I Coordination mechanisms from (almost) all scheduling policies Session details: Session 10: 10:30--10:40 Cryptogenography Rational arguments: single round delegation with sublinear verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1