识别带有“快乐”或“悲伤”情绪的体育视频镜头

Jinjun Wang, Chng Eng Siong, Changsheng Xu, Hanqing Lu, Xiaofeng Tong
{"title":"识别带有“快乐”或“悲伤”情绪的体育视频镜头","authors":"Jinjun Wang, Chng Eng Siong, Changsheng Xu, Hanqing Lu, Xiaofeng Tong","doi":"10.1109/ICME.2006.262641","DOIUrl":null,"url":null,"abstract":"Semantic video content extraction and selection are critical steps in sports video analysis and editing. The identification of video segments can be from various semantic perspectives, e.g. certain event, player or emotional state. In this paper, we examined the possibility of automatically identifying shots with \"happy\" or \"sad\" emotion from broadcast sports video. Our proposed model first performs the sports highlight extraction to obtain candidate shots that possibly contain emotion information and then classifies these shots into either \"happy\" or \"sad\" emotion groups using hidden Markov model based method. The final experimental results are satisfactory","PeriodicalId":339258,"journal":{"name":"2006 IEEE International Conference on Multimedia and Expo","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Identify Sports Video Shots with \\\"Happy\\\" or \\\"Sad\\\" Emotions\",\"authors\":\"Jinjun Wang, Chng Eng Siong, Changsheng Xu, Hanqing Lu, Xiaofeng Tong\",\"doi\":\"10.1109/ICME.2006.262641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic video content extraction and selection are critical steps in sports video analysis and editing. The identification of video segments can be from various semantic perspectives, e.g. certain event, player or emotional state. In this paper, we examined the possibility of automatically identifying shots with \\\"happy\\\" or \\\"sad\\\" emotion from broadcast sports video. Our proposed model first performs the sports highlight extraction to obtain candidate shots that possibly contain emotion information and then classifies these shots into either \\\"happy\\\" or \\\"sad\\\" emotion groups using hidden Markov model based method. The final experimental results are satisfactory\",\"PeriodicalId\":339258,\"journal\":{\"name\":\"2006 IEEE International Conference on Multimedia and Expo\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Multimedia and Expo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2006.262641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2006.262641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

语义视频内容的提取和选择是体育视频分析和编辑的关键步骤。视频片段的识别可以从不同的语义角度进行,例如特定的事件、玩家或情绪状态。在本文中,我们研究了从广播体育视频中自动识别带有“快乐”或“悲伤”情绪的镜头的可能性。我们提出的模型首先进行运动亮点提取,获得可能包含情绪信息的候选镜头,然后使用基于隐马尔可夫模型的方法将这些镜头分类为“快乐”或“悲伤”情绪组。最后的实验结果令人满意
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identify Sports Video Shots with "Happy" or "Sad" Emotions
Semantic video content extraction and selection are critical steps in sports video analysis and editing. The identification of video segments can be from various semantic perspectives, e.g. certain event, player or emotional state. In this paper, we examined the possibility of automatically identifying shots with "happy" or "sad" emotion from broadcast sports video. Our proposed model first performs the sports highlight extraction to obtain candidate shots that possibly contain emotion information and then classifies these shots into either "happy" or "sad" emotion groups using hidden Markov model based method. The final experimental results are satisfactory
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acoustic Echo Cancellation in a Channel with Rapidly Varying Gain A Two-Layer Graphical Model for Combined Video Shot and Scene Boundary Detection SCCS: A Scalable Clustered Camera System for Multiple Object Tracking Communicating Via Message Passing Interface Identification and Detection of the Same Scene Based on Flash Light Patterns Bandwidth Estimation in Wireless Lans for Multimedia Streaming Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1