{"title":"用K -ω模型计算湍流换热的壁面边界条件","authors":"J. Bredberg, S. Peng, L. Davidson","doi":"10.1115/imece2000-1582","DOIUrl":null,"url":null,"abstract":"\n A new wall boundary condition for the standard Wilcox’s k–ω model (1988) is proposed. The model combines a wall function and a low-Reynolds number approach, and a function that smoothly blends the two formulations, enabling the model to be used independently of the location of the first interior computational node. The model is calibrated using DNS-data for a channel flow and applied to a heat transfer prediction for a flow in a rib-roughened channel (Reb = 100 000). The results obtained with the new model are improved for various mesh sizes and are asymptotically identical with those of the standard k–ω turbulence model.","PeriodicalId":221080,"journal":{"name":"Heat Transfer: Volume 5","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"On the Wall Boundary Condition for Computing Turbulent Heat Transfer With K–ω Models\",\"authors\":\"J. Bredberg, S. Peng, L. Davidson\",\"doi\":\"10.1115/imece2000-1582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A new wall boundary condition for the standard Wilcox’s k–ω model (1988) is proposed. The model combines a wall function and a low-Reynolds number approach, and a function that smoothly blends the two formulations, enabling the model to be used independently of the location of the first interior computational node. The model is calibrated using DNS-data for a channel flow and applied to a heat transfer prediction for a flow in a rib-roughened channel (Reb = 100 000). The results obtained with the new model are improved for various mesh sizes and are asymptotically identical with those of the standard k–ω turbulence model.\",\"PeriodicalId\":221080,\"journal\":{\"name\":\"Heat Transfer: Volume 5\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer: Volume 5\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2000-1582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 5","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Wall Boundary Condition for Computing Turbulent Heat Transfer With K–ω Models
A new wall boundary condition for the standard Wilcox’s k–ω model (1988) is proposed. The model combines a wall function and a low-Reynolds number approach, and a function that smoothly blends the two formulations, enabling the model to be used independently of the location of the first interior computational node. The model is calibrated using DNS-data for a channel flow and applied to a heat transfer prediction for a flow in a rib-roughened channel (Reb = 100 000). The results obtained with the new model are improved for various mesh sizes and are asymptotically identical with those of the standard k–ω turbulence model.