学习用户交互模型,预测网络搜索结果偏好

Eugene Agichtein, Eric Brill, S. Dumais, R. Ragno
{"title":"学习用户交互模型,预测网络搜索结果偏好","authors":"Eugene Agichtein, Eric Brill, S. Dumais, R. Ragno","doi":"10.1145/1148170.1148175","DOIUrl":null,"url":null,"abstract":"Evaluating user preferences of web search results is crucial for search engine development, deployment, and maintenance. We present a real-world study of modeling the behavior of web search users to predict web search result preferences. Accurate modeling and interpretation of user behavior has important applications to ranking, click spam detection, web search personalization, and other tasks. Our key insight to improving robustness of interpreting implicit feedback is to model query-dependent deviations from the expected \"noisy\" user behavior. We show that our model of clickthrough interpretation improves prediction accuracy over state-of-the-art clickthrough methods. We generalize our approach to model user behavior beyond clickthrough, which results in higher preference prediction accuracy than models based on clickthrough information alone. We report results of a large-scale experimental evaluation that show substantial improvements over published implicit feedback interpretation methods.","PeriodicalId":433366,"journal":{"name":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"571","resultStr":"{\"title\":\"Learning user interaction models for predicting web search result preferences\",\"authors\":\"Eugene Agichtein, Eric Brill, S. Dumais, R. Ragno\",\"doi\":\"10.1145/1148170.1148175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evaluating user preferences of web search results is crucial for search engine development, deployment, and maintenance. We present a real-world study of modeling the behavior of web search users to predict web search result preferences. Accurate modeling and interpretation of user behavior has important applications to ranking, click spam detection, web search personalization, and other tasks. Our key insight to improving robustness of interpreting implicit feedback is to model query-dependent deviations from the expected \\\"noisy\\\" user behavior. We show that our model of clickthrough interpretation improves prediction accuracy over state-of-the-art clickthrough methods. We generalize our approach to model user behavior beyond clickthrough, which results in higher preference prediction accuracy than models based on clickthrough information alone. We report results of a large-scale experimental evaluation that show substantial improvements over published implicit feedback interpretation methods.\",\"PeriodicalId\":433366,\"journal\":{\"name\":\"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"571\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1148170.1148175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1148170.1148175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 571

摘要

评估用户对网络搜索结果的偏好对于搜索引擎的开发、部署和维护至关重要。我们提出了一个真实世界的研究建模网络搜索用户的行为,以预测网络搜索结果的偏好。用户行为的准确建模和解释对于排名、点击垃圾检测、网络搜索个性化和其他任务具有重要的应用。我们对提高解释隐式反馈的鲁棒性的关键见解是对与预期的“嘈杂”用户行为相关的查询依赖偏差进行建模。我们表明,我们的点击通过解释模型提高了最先进的点击通过方法的预测精度。我们将我们的方法推广到超越点击的用户行为模型,这比仅基于点击信息的模型具有更高的偏好预测精度。我们报告了一项大规模实验评估的结果,该结果显示了对已发表的隐式反馈解释方法的实质性改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning user interaction models for predicting web search result preferences
Evaluating user preferences of web search results is crucial for search engine development, deployment, and maintenance. We present a real-world study of modeling the behavior of web search users to predict web search result preferences. Accurate modeling and interpretation of user behavior has important applications to ranking, click spam detection, web search personalization, and other tasks. Our key insight to improving robustness of interpreting implicit feedback is to model query-dependent deviations from the expected "noisy" user behavior. We show that our model of clickthrough interpretation improves prediction accuracy over state-of-the-art clickthrough methods. We generalize our approach to model user behavior beyond clickthrough, which results in higher preference prediction accuracy than models based on clickthrough information alone. We report results of a large-scale experimental evaluation that show substantial improvements over published implicit feedback interpretation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Strict and vague interpretation of XML-retrieval queries AggregateRank: bringing order to web sites Text clustering with extended user feedback Improving personalized web search using result diversification High accuracy retrieval with multiple nested ranker
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1