动态工业无线网络中的分层资源划分

Jiachen Wang, Tianyu Zhang, Dawei Shen, Xiao Hu, Song Han
{"title":"动态工业无线网络中的分层资源划分","authors":"Jiachen Wang, Tianyu Zhang, Dawei Shen, Xiao Hu, Song Han","doi":"10.1109/ICDCS54860.2022.00103","DOIUrl":null,"url":null,"abstract":"Industrial wireless networks (IWNs) are being increasingly deployed in the field to serve as the network fabrics for various industrial Internet-of-Things (IIoT) applications. Given that IWNs typically operate in noisy and harsh environments, frequently occurring network dynamics post huge challenges for IWN resource management especially when the network scales up. Existing centralized and distributed network management solutions either suffer from large communication overhead and time delay, or introduce schedule collisions which unnecessarily degrade the system performance. To address these problems, this work proposes a novel HierArchical Resource Partitioning framework (HARP), to provide dynamic resource management in IWNs. By hierarchically partitioning and allocating resources for the links in the network, HARP enables distributed collision-free resource allocation. HARP enables rapid adjustment of the partitions in the presence of network dynamics with modest communication overhead. The effectiveness of HARP is validated and evaluated through both simulation studies and testbed experiments on a 50-node multi-channel multi-hop 6TiSCH network.","PeriodicalId":225883,"journal":{"name":"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"HARP: Hierarchical Resource Partitioning in Dynamic Industrial Wireless Networks\",\"authors\":\"Jiachen Wang, Tianyu Zhang, Dawei Shen, Xiao Hu, Song Han\",\"doi\":\"10.1109/ICDCS54860.2022.00103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Industrial wireless networks (IWNs) are being increasingly deployed in the field to serve as the network fabrics for various industrial Internet-of-Things (IIoT) applications. Given that IWNs typically operate in noisy and harsh environments, frequently occurring network dynamics post huge challenges for IWN resource management especially when the network scales up. Existing centralized and distributed network management solutions either suffer from large communication overhead and time delay, or introduce schedule collisions which unnecessarily degrade the system performance. To address these problems, this work proposes a novel HierArchical Resource Partitioning framework (HARP), to provide dynamic resource management in IWNs. By hierarchically partitioning and allocating resources for the links in the network, HARP enables distributed collision-free resource allocation. HARP enables rapid adjustment of the partitions in the presence of network dynamics with modest communication overhead. The effectiveness of HARP is validated and evaluated through both simulation studies and testbed experiments on a 50-node multi-channel multi-hop 6TiSCH network.\",\"PeriodicalId\":225883,\"journal\":{\"name\":\"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS54860.2022.00103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS54860.2022.00103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

工业无线网络(IWNs)正越来越多地部署在现场,作为各种工业物联网(IIoT)应用的网络结构。鉴于IWN通常在嘈杂和恶劣的环境中运行,频繁发生的网络动态给IWN资源管理带来了巨大的挑战,特别是当网络规模扩大时。现有的集中式和分布式网络管理解决方案要么存在较大的通信开销和时间延迟,要么引入了不必要地降低系统性能的调度冲突。为了解决这些问题,本工作提出了一种新的分层资源划分框架(HARP),以提供IWNs中的动态资源管理。通过为网络中的链路分层划分和分配资源,HARP实现了分布式的无冲突资源分配。HARP支持在网络动态存在的情况下快速调整分区,并且通信开销不大。通过在50节点多通道多跳6TiSCH网络上的仿真研究和试验台实验,验证了HARP算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HARP: Hierarchical Resource Partitioning in Dynamic Industrial Wireless Networks
Industrial wireless networks (IWNs) are being increasingly deployed in the field to serve as the network fabrics for various industrial Internet-of-Things (IIoT) applications. Given that IWNs typically operate in noisy and harsh environments, frequently occurring network dynamics post huge challenges for IWN resource management especially when the network scales up. Existing centralized and distributed network management solutions either suffer from large communication overhead and time delay, or introduce schedule collisions which unnecessarily degrade the system performance. To address these problems, this work proposes a novel HierArchical Resource Partitioning framework (HARP), to provide dynamic resource management in IWNs. By hierarchically partitioning and allocating resources for the links in the network, HARP enables distributed collision-free resource allocation. HARP enables rapid adjustment of the partitions in the presence of network dynamics with modest communication overhead. The effectiveness of HARP is validated and evaluated through both simulation studies and testbed experiments on a 50-node multi-channel multi-hop 6TiSCH network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nezha: Exploiting Concurrency for Transaction Processing in DAG-based Blockchains Toward Cleansing Backdoored Neural Networks in Federated Learning Themis: An Equal, Unpredictable, and Scalable Consensus for Consortium Blockchain IoDSCF: A Store-Carry-Forward Routing Protocol for joint Bus Networks and Internet of Drones FlowValve: Packet Scheduling Offloaded on NP-based SmartNICs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1