{"title":"导论章:宏基因组学和宏基因组学方法","authors":"W. Hozzein","doi":"10.5772/intechopen.87949","DOIUrl":null,"url":null,"abstract":"Metagenomics can be defined as the techniques and procedures that are used for the culture-independent analysis of the total genomic content of microorganisms living in a certain environment [1]. It has many useful applications with very promising potential in both medical and environmental microbiology. The most common use of metagenomics in environmental microbiology is studying the diversity of microbial communities in particular environments through the analysis of rRNA genes and how these communities change in response to changes in physical and chemical properties of these environments [2]. Metagenomics also provides an opportunity to obtain and identify novel enzymes with industrial applications from extreme environments where unculturable extremophiles live. In such circumstances, functional metagenomics enables the isolation of genes coding for extremozymes, enzymes that are capable of being catalytically active in extreme conditions, or genes that will allow for better understanding of the mechanisms that make such organisms resistant to extreme environmental conditions [3]. Metagenomics has special importance when it comes to studying soil microbiology. It is estimated that the number of distinct microorganisms in 1 gram of soil exceeds the number of microbial species cultured so far [4]. Therefore, metagenomics seems to be the ideal culture-independent technique for unraveling the biodiversity of soil microorganisms and to study how this biodiversity is affected with continuously changing conditions.","PeriodicalId":286811,"journal":{"name":"Metagenomics - Basics, Methods and Applications","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Introductory Chapter: Metagenomics and Metagenomic Approaches\",\"authors\":\"W. Hozzein\",\"doi\":\"10.5772/intechopen.87949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metagenomics can be defined as the techniques and procedures that are used for the culture-independent analysis of the total genomic content of microorganisms living in a certain environment [1]. It has many useful applications with very promising potential in both medical and environmental microbiology. The most common use of metagenomics in environmental microbiology is studying the diversity of microbial communities in particular environments through the analysis of rRNA genes and how these communities change in response to changes in physical and chemical properties of these environments [2]. Metagenomics also provides an opportunity to obtain and identify novel enzymes with industrial applications from extreme environments where unculturable extremophiles live. In such circumstances, functional metagenomics enables the isolation of genes coding for extremozymes, enzymes that are capable of being catalytically active in extreme conditions, or genes that will allow for better understanding of the mechanisms that make such organisms resistant to extreme environmental conditions [3]. Metagenomics has special importance when it comes to studying soil microbiology. It is estimated that the number of distinct microorganisms in 1 gram of soil exceeds the number of microbial species cultured so far [4]. Therefore, metagenomics seems to be the ideal culture-independent technique for unraveling the biodiversity of soil microorganisms and to study how this biodiversity is affected with continuously changing conditions.\",\"PeriodicalId\":286811,\"journal\":{\"name\":\"Metagenomics - Basics, Methods and Applications\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metagenomics - Basics, Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.87949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metagenomics - Basics, Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.87949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Introductory Chapter: Metagenomics and Metagenomic Approaches
Metagenomics can be defined as the techniques and procedures that are used for the culture-independent analysis of the total genomic content of microorganisms living in a certain environment [1]. It has many useful applications with very promising potential in both medical and environmental microbiology. The most common use of metagenomics in environmental microbiology is studying the diversity of microbial communities in particular environments through the analysis of rRNA genes and how these communities change in response to changes in physical and chemical properties of these environments [2]. Metagenomics also provides an opportunity to obtain and identify novel enzymes with industrial applications from extreme environments where unculturable extremophiles live. In such circumstances, functional metagenomics enables the isolation of genes coding for extremozymes, enzymes that are capable of being catalytically active in extreme conditions, or genes that will allow for better understanding of the mechanisms that make such organisms resistant to extreme environmental conditions [3]. Metagenomics has special importance when it comes to studying soil microbiology. It is estimated that the number of distinct microorganisms in 1 gram of soil exceeds the number of microbial species cultured so far [4]. Therefore, metagenomics seems to be the ideal culture-independent technique for unraveling the biodiversity of soil microorganisms and to study how this biodiversity is affected with continuously changing conditions.