机器人驱动系统的优化设计——作动器增益

Ching-Cheng Wang
{"title":"机器人驱动系统的优化设计——作动器增益","authors":"Ching-Cheng Wang","doi":"10.1109/ROBOT.1987.1087951","DOIUrl":null,"url":null,"abstract":"The robot drive system has been previously designed to achieve optimal performance in the acceleration space by matching the gear ratios and actuator impedances. In this paper, the design effort on the robot drive system is continued to achieve the optimal performance measured in the velocity and angular velocity space. Design variables are first identified to be actuator gains. Then, the speed hull geometry of a design is analyzed and an appropriate performance measurement of this design is explored. To locate the optimal design, efficient algorithms dedicated to speed hull constructions are identified and the steepest descent direction, is derived to assist in searching for the optimal design. It is found that the objective function of the optimal design problem is not convex and a local optimal design shouldn't be mistaken as the global optimal design. However, for drive systems built with low gear ratios, the nonlinear effects are negligible and the objective function is convex. Therefore, a local optimal design is the global optimal design.","PeriodicalId":438447,"journal":{"name":"Proceedings. 1987 IEEE International Conference on Robotics and Automation","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The optimal design of robot drive system--Actuator gains\",\"authors\":\"Ching-Cheng Wang\",\"doi\":\"10.1109/ROBOT.1987.1087951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The robot drive system has been previously designed to achieve optimal performance in the acceleration space by matching the gear ratios and actuator impedances. In this paper, the design effort on the robot drive system is continued to achieve the optimal performance measured in the velocity and angular velocity space. Design variables are first identified to be actuator gains. Then, the speed hull geometry of a design is analyzed and an appropriate performance measurement of this design is explored. To locate the optimal design, efficient algorithms dedicated to speed hull constructions are identified and the steepest descent direction, is derived to assist in searching for the optimal design. It is found that the objective function of the optimal design problem is not convex and a local optimal design shouldn't be mistaken as the global optimal design. However, for drive systems built with low gear ratios, the nonlinear effects are negligible and the objective function is convex. Therefore, a local optimal design is the global optimal design.\",\"PeriodicalId\":438447,\"journal\":{\"name\":\"Proceedings. 1987 IEEE International Conference on Robotics and Automation\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1987 IEEE International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.1987.1087951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1987 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.1987.1087951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

机器人驱动系统的设计是通过匹配传动比和执行器阻抗来实现加速度空间的最佳性能。本文继续对机器人驱动系统进行设计,以达到速度和角速度空间测量的最佳性能。设计变量首先被确定为执行器增益。然后,分析了某型航速艇的几何形状,探讨了该型航速艇的性能测量方法。为了找到最优设计,确定了快速船体结构的有效算法,并推导了最陡下降方向,以帮助寻找最优设计。结果表明,优化设计问题的目标函数不是凸的,局部优化设计不应被误认为是全局优化设计。然而,对于低传动比的驱动系统,非线性效应可以忽略不计,目标函数是凸的。因此,局部优化设计就是全局优化设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The optimal design of robot drive system--Actuator gains
The robot drive system has been previously designed to achieve optimal performance in the acceleration space by matching the gear ratios and actuator impedances. In this paper, the design effort on the robot drive system is continued to achieve the optimal performance measured in the velocity and angular velocity space. Design variables are first identified to be actuator gains. Then, the speed hull geometry of a design is analyzed and an appropriate performance measurement of this design is explored. To locate the optimal design, efficient algorithms dedicated to speed hull constructions are identified and the steepest descent direction, is derived to assist in searching for the optimal design. It is found that the objective function of the optimal design problem is not convex and a local optimal design shouldn't be mistaken as the global optimal design. However, for drive systems built with low gear ratios, the nonlinear effects are negligible and the objective function is convex. Therefore, a local optimal design is the global optimal design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to move a chair through a door AI applications for the space station Vision guided robotic fabric manipulation for apparel manufacturing Planning and scheduling for epitaxial wafer production facilities The Edinburgh designer system as a framework for robotics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1