{"title":"基于单层二硫化钼和纳米银的可见光吸收材料","authors":"Wenbing Chen, Lei Wang, Yannan Jiang, Jiao Wang","doi":"10.1109/ICMMT.2018.8563880","DOIUrl":null,"url":null,"abstract":"The monolayer MoS2 offer wide band gap and has great potential in energy storage, sensor, photonics. In this paper, we design and simulate a perfect absorber based on the local surface plasmon resonance and the coupling properties between the Ag pattern and the monolayer MoS2. The absorption value is almost 100% at peak, and the bandwidth of the absorption greater than 90% can reach 20THz. It is also polarization independent due to the fourfold rotational structural symmetry. The absorption value still remains over 90% when the incident angle increases to 60 degrees. The absorber has a great potential in many applications such as photodetectors, solar cell, sensors.","PeriodicalId":190601,"journal":{"name":"2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT)","volume":"330 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Perfect Absorber Based on Monolayer MoS2 and Nano-Silver in the Visible Regime\",\"authors\":\"Wenbing Chen, Lei Wang, Yannan Jiang, Jiao Wang\",\"doi\":\"10.1109/ICMMT.2018.8563880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The monolayer MoS2 offer wide band gap and has great potential in energy storage, sensor, photonics. In this paper, we design and simulate a perfect absorber based on the local surface plasmon resonance and the coupling properties between the Ag pattern and the monolayer MoS2. The absorption value is almost 100% at peak, and the bandwidth of the absorption greater than 90% can reach 20THz. It is also polarization independent due to the fourfold rotational structural symmetry. The absorption value still remains over 90% when the incident angle increases to 60 degrees. The absorber has a great potential in many applications such as photodetectors, solar cell, sensors.\",\"PeriodicalId\":190601,\"journal\":{\"name\":\"2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT)\",\"volume\":\"330 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMMT.2018.8563880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMMT.2018.8563880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Perfect Absorber Based on Monolayer MoS2 and Nano-Silver in the Visible Regime
The monolayer MoS2 offer wide band gap and has great potential in energy storage, sensor, photonics. In this paper, we design and simulate a perfect absorber based on the local surface plasmon resonance and the coupling properties between the Ag pattern and the monolayer MoS2. The absorption value is almost 100% at peak, and the bandwidth of the absorption greater than 90% can reach 20THz. It is also polarization independent due to the fourfold rotational structural symmetry. The absorption value still remains over 90% when the incident angle increases to 60 degrees. The absorber has a great potential in many applications such as photodetectors, solar cell, sensors.