直观:通过本体导航进行直观的数据探索

M. Adelfio, Michael D. Lieberman, H. Samet, K. Firozvi
{"title":"直观:通过本体导航进行直观的数据探索","authors":"M. Adelfio, Michael D. Lieberman, H. Samet, K. Firozvi","doi":"10.1145/1869790.1869887","DOIUrl":null,"url":null,"abstract":"Ontuition, a system for mapping ontologies, is presented. Transforming data to a usable format for Ontuition involves recognizing and resolving data values corresponding to concepts in multiple ontological domains. In particular, for datasets with a geographic component an attempt is made to identify and extract enough spatio-textual data that specific lat/long values to dataset entries can be assigned. Next, a gazetteer is used to transform the textually-specified locations into lat/long values that can be displayed on a map. Non-spatial ontological concepts are also discovered. This methodology is applied to the National Library of Medicine's very popular clinical trials website (http://clinicaltrials.gov/) whose users are generally interested in locating trials near where they live. The trials are specified using XML files. The location data is extracted and coupled with a disease ontology to enable general queries on the data with the result being of use to a very large group of people. The goal is to do this automatically for such ontology datasets with a locational component.","PeriodicalId":359068,"journal":{"name":"ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Ontuition: intuitive data exploration via ontology navigation\",\"authors\":\"M. Adelfio, Michael D. Lieberman, H. Samet, K. Firozvi\",\"doi\":\"10.1145/1869790.1869887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ontuition, a system for mapping ontologies, is presented. Transforming data to a usable format for Ontuition involves recognizing and resolving data values corresponding to concepts in multiple ontological domains. In particular, for datasets with a geographic component an attempt is made to identify and extract enough spatio-textual data that specific lat/long values to dataset entries can be assigned. Next, a gazetteer is used to transform the textually-specified locations into lat/long values that can be displayed on a map. Non-spatial ontological concepts are also discovered. This methodology is applied to the National Library of Medicine's very popular clinical trials website (http://clinicaltrials.gov/) whose users are generally interested in locating trials near where they live. The trials are specified using XML files. The location data is extracted and coupled with a disease ontology to enable general queries on the data with the result being of use to a very large group of people. The goal is to do this automatically for such ontology datasets with a locational component.\",\"PeriodicalId\":359068,\"journal\":{\"name\":\"ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1869790.1869887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1869790.1869887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了本体映射系统ontutorial。将数据转换为可用于on学费的格式涉及识别和解析与多个本体域中的概念相对应的数据值。特别是,对于具有地理成分的数据集,尝试识别和提取足够的空间文本数据,以便可以为数据集条目分配特定的lat/long值。接下来,使用地名表将文本指定的位置转换为可在地图上显示的纬度/长度值。非空间本体论概念也被发现。这种方法被应用于美国国家医学图书馆非常受欢迎的临床试验网站(http://clinicaltrials.gov/),该网站的用户通常对在他们居住的地方附近进行试验感兴趣。试验使用XML文件指定。提取位置数据并将其与疾病本体相结合,以实现对数据的一般查询,其结果可用于非常大的人群。我们的目标是通过位置组件自动完成这些本体数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ontuition: intuitive data exploration via ontology navigation
Ontuition, a system for mapping ontologies, is presented. Transforming data to a usable format for Ontuition involves recognizing and resolving data values corresponding to concepts in multiple ontological domains. In particular, for datasets with a geographic component an attempt is made to identify and extract enough spatio-textual data that specific lat/long values to dataset entries can be assigned. Next, a gazetteer is used to transform the textually-specified locations into lat/long values that can be displayed on a map. Non-spatial ontological concepts are also discovered. This methodology is applied to the National Library of Medicine's very popular clinical trials website (http://clinicaltrials.gov/) whose users are generally interested in locating trials near where they live. The trials are specified using XML files. The location data is extracted and coupled with a disease ontology to enable general queries on the data with the result being of use to a very large group of people. The goal is to do this automatically for such ontology datasets with a locational component.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pai Geolocation Time Geography Stationarity Cognitive Mapping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1