石墨烯-银基被动调q器

N. A. H. Jasni, S. Zuikafly, H. Yahaya, M. Abdullah, F. Ahmad
{"title":"石墨烯-银基被动调q器","authors":"N. A. H. Jasni, S. Zuikafly, H. Yahaya, M. Abdullah, F. Ahmad","doi":"10.37934/ARMS.76.1.19","DOIUrl":null,"url":null,"abstract":"Pulsed fiber laser has gain massive attention among researchers. As one of the recognized methods in generating pulsed lasers, passive Q-switching technique in 1.5 micrometer region was used in this work. A graphene-silver composite (Gr-Ag) was integrated as the saturable absorber (SA) in this work. For ease of integration, a free-standing SA film was fabricated by using chitin as the host polymer. The pulsed fiber laser was generated within the input pump power of 135.7 mW to 181.5 mW. Distinct trends of repetition rate and pulse width was observed where the former shows an increasing trend and vice versa for the latter. At 181.5 mW, pulsed laser with repetition rate and pulse width at 59.97 kHz and 2.74 µs, respectively were recorded while the pulse energy and instantaneous peak power were at 5.64 nJ and 1.93 mW, respectively. The findings from this work have shown Gr-Ag SA as a suitable candidate in Q-switched pulsed laser generation.","PeriodicalId":176840,"journal":{"name":"Journal of Advanced Research in Materials Science","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Graphene-Silver Based Passive Q-Switcher\",\"authors\":\"N. A. H. Jasni, S. Zuikafly, H. Yahaya, M. Abdullah, F. Ahmad\",\"doi\":\"10.37934/ARMS.76.1.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pulsed fiber laser has gain massive attention among researchers. As one of the recognized methods in generating pulsed lasers, passive Q-switching technique in 1.5 micrometer region was used in this work. A graphene-silver composite (Gr-Ag) was integrated as the saturable absorber (SA) in this work. For ease of integration, a free-standing SA film was fabricated by using chitin as the host polymer. The pulsed fiber laser was generated within the input pump power of 135.7 mW to 181.5 mW. Distinct trends of repetition rate and pulse width was observed where the former shows an increasing trend and vice versa for the latter. At 181.5 mW, pulsed laser with repetition rate and pulse width at 59.97 kHz and 2.74 µs, respectively were recorded while the pulse energy and instantaneous peak power were at 5.64 nJ and 1.93 mW, respectively. The findings from this work have shown Gr-Ag SA as a suitable candidate in Q-switched pulsed laser generation.\",\"PeriodicalId\":176840,\"journal\":{\"name\":\"Journal of Advanced Research in Materials Science\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Research in Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37934/ARMS.76.1.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research in Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/ARMS.76.1.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

脉冲光纤激光器受到了研究人员的广泛关注。作为一种公认的产生脉冲激光器的方法,本研究采用了1.5微米区域的被动q开关技术。本文将石墨烯-银复合材料(Gr-Ag)集成为可饱和吸收剂(SA)。为了便于整合,以几丁质为主体聚合物制备了独立的SA膜。在135.7 ~ 181.5 mW的输入泵浦功率范围内产生脉冲光纤激光器。重复率和脉宽的明显趋势是观察到前者显示增加的趋势,而后者则相反。在181.5 mW时,脉冲激光的重复频率为59.97 kHz,脉冲宽度为2.74µs,脉冲能量为5.64 nJ,瞬时峰值功率为1.93 mW。这项工作的发现表明,Gr-Ag SA是q开关脉冲激光产生的合适候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graphene-Silver Based Passive Q-Switcher
Pulsed fiber laser has gain massive attention among researchers. As one of the recognized methods in generating pulsed lasers, passive Q-switching technique in 1.5 micrometer region was used in this work. A graphene-silver composite (Gr-Ag) was integrated as the saturable absorber (SA) in this work. For ease of integration, a free-standing SA film was fabricated by using chitin as the host polymer. The pulsed fiber laser was generated within the input pump power of 135.7 mW to 181.5 mW. Distinct trends of repetition rate and pulse width was observed where the former shows an increasing trend and vice versa for the latter. At 181.5 mW, pulsed laser with repetition rate and pulse width at 59.97 kHz and 2.74 µs, respectively were recorded while the pulse energy and instantaneous peak power were at 5.64 nJ and 1.93 mW, respectively. The findings from this work have shown Gr-Ag SA as a suitable candidate in Q-switched pulsed laser generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Photocatalytic and UV-VIS Optical Properties of Titanium-Silver Doped Composite Synthesized by Hydrothermal Method Enhancement of Acoustic Performance of Oil Palm Frond Natural Fibers by Substitution of Jute Fiber The Effect of Temperature on Catalytic Pyrolysis of HDPE Over Ni/Ce/Al2O3 Concrete Brick Properties Incorporating EPS and POFA as Replacement Materials Impact of Laser Intensities at Various DPI and Pixel Time on the Properties of Denim Garments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1