用自然语言从输入规范中自动生成测试用例

Tianyu Li, Xiuwen Lu, Hui Xu
{"title":"用自然语言从输入规范中自动生成测试用例","authors":"Tianyu Li, Xiuwen Lu, Hui Xu","doi":"10.1109/ISSREW55968.2022.00076","DOIUrl":null,"url":null,"abstract":"This paper studies the problem of automated test case generation for online coding test, i.e., given an input specification in natural language, how can we generate test cases automatically to examine the correctness of the code implemented by the testee? To tackle the problem, this paper proposes an approach that first extracts noun phrases from an input specification; then it removes irrelevant noun phrases and only retains the key phrases related to input construction; by reorganizing these key phrases, it can form an information tree and generate test cases accordingly. We have evaluated our approach with two datasets from LeetCode and ACM and achieved promising results.","PeriodicalId":178302,"journal":{"name":"2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automated Test Case Generation from Input Specification in Natural Language\",\"authors\":\"Tianyu Li, Xiuwen Lu, Hui Xu\",\"doi\":\"10.1109/ISSREW55968.2022.00076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the problem of automated test case generation for online coding test, i.e., given an input specification in natural language, how can we generate test cases automatically to examine the correctness of the code implemented by the testee? To tackle the problem, this paper proposes an approach that first extracts noun phrases from an input specification; then it removes irrelevant noun phrases and only retains the key phrases related to input construction; by reorganizing these key phrases, it can form an information tree and generate test cases accordingly. We have evaluated our approach with two datasets from LeetCode and ACM and achieved promising results.\",\"PeriodicalId\":178302,\"journal\":{\"name\":\"2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSREW55968.2022.00076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW55968.2022.00076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了在线编码测试的自动测试用例生成问题,即,给定自然语言的输入规范,我们如何自动生成测试用例来检查被测试者实现的代码的正确性?为了解决这个问题,本文提出了一种首先从输入规范中提取名词短语的方法;然后删除无关的名词短语,只保留与输入结构相关的关键短语;通过重新组织这些关键短语,它可以形成一个信息树,并相应地生成测试用例。我们用来自LeetCode和ACM的两个数据集评估了我们的方法,并取得了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated Test Case Generation from Input Specification in Natural Language
This paper studies the problem of automated test case generation for online coding test, i.e., given an input specification in natural language, how can we generate test cases automatically to examine the correctness of the code implemented by the testee? To tackle the problem, this paper proposes an approach that first extracts noun phrases from an input specification; then it removes irrelevant noun phrases and only retains the key phrases related to input construction; by reorganizing these key phrases, it can form an information tree and generate test cases accordingly. We have evaluated our approach with two datasets from LeetCode and ACM and achieved promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Complexity Metrics with Hotspot Analysis to Support Software Sustainability Evaluating Human Locomotion Safety in Mobile Robots Populated Environments Performance Bottleneck Analysis of Drone Computation Offloading to a Shared Fog Node Early Software Defect Prediction: Right-Shifting Software Effort Data into a Defect Curve A Survey on Autonomous Driving System Simulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1