{"title":"验证自定时分压器","authors":"Tarik Ono-Tesfaye, Christoph Kern, M. Greenstreet","doi":"10.1109/ASYNC.1998.666501","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to verifying timed designs based on refinement: first, correctness is established for a speed-independent model; then, the timed design is shown to be a refinement of this model. Although this approach is less automatic than methods based on timed state space enumeration, it is tractable for larger designs. Our method is implemented using a proof checker with a built-in model checker for verifying properties of high-level models, a tautology checker for establishing refinement, and a graph-based timing verification procedure for showing timing properties of transistor level models. We demonstrate the method by proving the timing correctness of Williams' self-timed divider.","PeriodicalId":425072,"journal":{"name":"Proceedings Fourth International Symposium on Advanced Research in Asynchronous Circuits and Systems","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Verifying a self-timed divider\",\"authors\":\"Tarik Ono-Tesfaye, Christoph Kern, M. Greenstreet\",\"doi\":\"10.1109/ASYNC.1998.666501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach to verifying timed designs based on refinement: first, correctness is established for a speed-independent model; then, the timed design is shown to be a refinement of this model. Although this approach is less automatic than methods based on timed state space enumeration, it is tractable for larger designs. Our method is implemented using a proof checker with a built-in model checker for verifying properties of high-level models, a tautology checker for establishing refinement, and a graph-based timing verification procedure for showing timing properties of transistor level models. We demonstrate the method by proving the timing correctness of Williams' self-timed divider.\",\"PeriodicalId\":425072,\"journal\":{\"name\":\"Proceedings Fourth International Symposium on Advanced Research in Asynchronous Circuits and Systems\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Fourth International Symposium on Advanced Research in Asynchronous Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASYNC.1998.666501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fourth International Symposium on Advanced Research in Asynchronous Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASYNC.1998.666501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents an approach to verifying timed designs based on refinement: first, correctness is established for a speed-independent model; then, the timed design is shown to be a refinement of this model. Although this approach is less automatic than methods based on timed state space enumeration, it is tractable for larger designs. Our method is implemented using a proof checker with a built-in model checker for verifying properties of high-level models, a tautology checker for establishing refinement, and a graph-based timing verification procedure for showing timing properties of transistor level models. We demonstrate the method by proving the timing correctness of Williams' self-timed divider.