四维地震资料辅助历史匹配的比较研究

K. Fossum, R. Lorentzen
{"title":"四维地震资料辅助历史匹配的比较研究","authors":"K. Fossum, R. Lorentzen","doi":"10.3997/2214-4609.201902180","DOIUrl":null,"url":null,"abstract":"Summary In this work we present two unique workflows for assisted history matching of seismic and production data, and demonstrate the methods on a real field case. Both workflows use an iterative ensemble smoother for the data assimilation, but differ in data representation and localization method. Further, publicly available seismic data are inverted for acoustic impedance using two different approaches. In addition, correlated data noise is estimated for the 4D attributes using different techniques. History matching results are presented for selected production and seismic data, and estimated parameters are shown for one layer in the model. Both workflows demonstrate that ensemble based iterative smoothers can successfully assimilate large amounts of correlated data. Despite methodological differences in the workflows, both methods are able to make significant improvements to the data match. The work demonstrates promising advances towards assisted assimilation of big data-sets for real field cases.","PeriodicalId":186806,"journal":{"name":"Petroleum Geostatistics 2019","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Assisted History Matching of 4D Seismic Data - A Comparative Study\",\"authors\":\"K. Fossum, R. Lorentzen\",\"doi\":\"10.3997/2214-4609.201902180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary In this work we present two unique workflows for assisted history matching of seismic and production data, and demonstrate the methods on a real field case. Both workflows use an iterative ensemble smoother for the data assimilation, but differ in data representation and localization method. Further, publicly available seismic data are inverted for acoustic impedance using two different approaches. In addition, correlated data noise is estimated for the 4D attributes using different techniques. History matching results are presented for selected production and seismic data, and estimated parameters are shown for one layer in the model. Both workflows demonstrate that ensemble based iterative smoothers can successfully assimilate large amounts of correlated data. Despite methodological differences in the workflows, both methods are able to make significant improvements to the data match. The work demonstrates promising advances towards assisted assimilation of big data-sets for real field cases.\",\"PeriodicalId\":186806,\"journal\":{\"name\":\"Petroleum Geostatistics 2019\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Geostatistics 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201902180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geostatistics 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201902180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这项工作中,我们提出了两种独特的工作流程,用于辅助地震和生产数据的历史匹配,并在实际现场案例中演示了该方法。两种工作流都使用迭代集成平滑器进行数据同化,但在数据表示和定位方法上有所不同。此外,使用两种不同的方法对公开可用的地震数据进行声阻抗反演。此外,利用不同的技术估计了四维属性的相关数据噪声。给出了选定生产数据和地震数据的历史匹配结果,并给出了模型中某一层的估计参数。两个工作流都证明了基于集成的迭代平滑器可以成功地吸收大量相关数据。尽管这两种方法在工作流程上存在方法上的差异,但它们都能够显著改善数据匹配。这项工作展示了在实际现场案例中辅助同化大数据集方面有希望的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assisted History Matching of 4D Seismic Data - A Comparative Study
Summary In this work we present two unique workflows for assisted history matching of seismic and production data, and demonstrate the methods on a real field case. Both workflows use an iterative ensemble smoother for the data assimilation, but differ in data representation and localization method. Further, publicly available seismic data are inverted for acoustic impedance using two different approaches. In addition, correlated data noise is estimated for the 4D attributes using different techniques. History matching results are presented for selected production and seismic data, and estimated parameters are shown for one layer in the model. Both workflows demonstrate that ensemble based iterative smoothers can successfully assimilate large amounts of correlated data. Despite methodological differences in the workflows, both methods are able to make significant improvements to the data match. The work demonstrates promising advances towards assisted assimilation of big data-sets for real field cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Forward Model Applied to Channelized Turbidite Systems: A Case Study of the Benin Major Valley Fill Stochastic Seismic Inversion Based on a Fuzzy Model A Bayesian Approach for Full-waveform Inversion Using Wide-aperture Seismic Data Ensemble-based Kernel Learning to Handle Rock-physics-model Imperfection in Seismic History Matching: A Real Field Case Study Features of Factor Models in Seismic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1