云环境中动态资源分配的最小成本最大流量算法

Makhlouf Hadji, D. Zeghlache
{"title":"云环境中动态资源分配的最小成本最大流量算法","authors":"Makhlouf Hadji, D. Zeghlache","doi":"10.1109/CLOUD.2012.36","DOIUrl":null,"url":null,"abstract":"A minimum cost maximum flow algorithm is proposed for resources(e.g. virtual machines) placement in clouds confronted to dynamic workloads and flows variations. The algorithm is compared to an exact method generalizing the classical Bin-Packing formulation using a linear integer program. A directed graph is used to model the allocation problem for cloud resources organized in a finite number of resource types; a common practice in cloud services. Providers can use the minimum cost maximum flow algorithm to opportunistically select the most appropriate physical resources to serve applications or to ensure elastic platform provisioning. The modified Bin-Packing algorithm is used to benchmark the minimum cost maximum flow solution. The latter combined with a prediction mechanism to handle dynamic variations achieves near optimal performance.","PeriodicalId":214084,"journal":{"name":"2012 IEEE Fifth International Conference on Cloud Computing","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":"{\"title\":\"Minimum Cost Maximum Flow Algorithm for Dynamic Resource Allocation in Clouds\",\"authors\":\"Makhlouf Hadji, D. Zeghlache\",\"doi\":\"10.1109/CLOUD.2012.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A minimum cost maximum flow algorithm is proposed for resources(e.g. virtual machines) placement in clouds confronted to dynamic workloads and flows variations. The algorithm is compared to an exact method generalizing the classical Bin-Packing formulation using a linear integer program. A directed graph is used to model the allocation problem for cloud resources organized in a finite number of resource types; a common practice in cloud services. Providers can use the minimum cost maximum flow algorithm to opportunistically select the most appropriate physical resources to serve applications or to ensure elastic platform provisioning. The modified Bin-Packing algorithm is used to benchmark the minimum cost maximum flow solution. The latter combined with a prediction mechanism to handle dynamic variations achieves near optimal performance.\",\"PeriodicalId\":214084,\"journal\":{\"name\":\"2012 IEEE Fifth International Conference on Cloud Computing\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Fifth International Conference on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLOUD.2012.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Fifth International Conference on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD.2012.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

摘要

提出了一种最小成本最大流量算法。虚拟机)在云中的放置面临动态工作负载和流变化。将该算法与用线性整数规划推广经典装箱公式的精确方法进行了比较。利用有向图对有限资源类型下的云资源分配问题进行建模;这是云服务中的常见做法。提供商可以使用最小成本最大流量算法来选择最合适的物理资源来服务应用程序或确保弹性平台供应。采用改进的Bin-Packing算法对最小代价最大流量解进行基准测试。后者与处理动态变化的预测机制相结合,实现了接近最佳的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Minimum Cost Maximum Flow Algorithm for Dynamic Resource Allocation in Clouds
A minimum cost maximum flow algorithm is proposed for resources(e.g. virtual machines) placement in clouds confronted to dynamic workloads and flows variations. The algorithm is compared to an exact method generalizing the classical Bin-Packing formulation using a linear integer program. A directed graph is used to model the allocation problem for cloud resources organized in a finite number of resource types; a common practice in cloud services. Providers can use the minimum cost maximum flow algorithm to opportunistically select the most appropriate physical resources to serve applications or to ensure elastic platform provisioning. The modified Bin-Packing algorithm is used to benchmark the minimum cost maximum flow solution. The latter combined with a prediction mechanism to handle dynamic variations achieves near optimal performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Resource Scaling Based on Application Service Requirements Optimizing JMS Performance for Cloud-Based Application Servers Sharing-Aware Cloud-Based Mobile Outsourcing QoS-Driven Service Selection for Multi-tenant SaaS Maitland: Lighter-Weight VM Introspection to Support Cyber-security in the Cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1