感兴趣的等级区域

P. Järv, T. Tammet, Marten Tall
{"title":"感兴趣的等级区域","authors":"P. Järv, T. Tammet, Marten Tall","doi":"10.1109/MDM.2018.00025","DOIUrl":null,"url":null,"abstract":"Mining crowd-sourced movement trajectories is a useful tool in urban computing. Common mobility patterns of the visitors or residents of a city can be exploited in applications such as disaster management, transportation planning and ad placement. In recommendation systems, individual behaviour is of special interest. To extract the visiting behaviour of individuals, the trajectories need to be semantically annotated. We describe how hierarchical regions of interest (ROIs) can be used for semantic annotation. By combining multiple layers of smaller and larger regions we can flexibly detect both visits to dense hotspots and trajectory segments visiting larger areas, such as an old town, a park or an island. Extending the annotation beyond common hotspots captures more information about the behaviour.","PeriodicalId":205319,"journal":{"name":"2018 19th IEEE International Conference on Mobile Data Management (MDM)","volume":"268 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Hierarchical Regions of Interest\",\"authors\":\"P. Järv, T. Tammet, Marten Tall\",\"doi\":\"10.1109/MDM.2018.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mining crowd-sourced movement trajectories is a useful tool in urban computing. Common mobility patterns of the visitors or residents of a city can be exploited in applications such as disaster management, transportation planning and ad placement. In recommendation systems, individual behaviour is of special interest. To extract the visiting behaviour of individuals, the trajectories need to be semantically annotated. We describe how hierarchical regions of interest (ROIs) can be used for semantic annotation. By combining multiple layers of smaller and larger regions we can flexibly detect both visits to dense hotspots and trajectory segments visiting larger areas, such as an old town, a park or an island. Extending the annotation beyond common hotspots captures more information about the behaviour.\",\"PeriodicalId\":205319,\"journal\":{\"name\":\"2018 19th IEEE International Conference on Mobile Data Management (MDM)\",\"volume\":\"268 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 19th IEEE International Conference on Mobile Data Management (MDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MDM.2018.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 19th IEEE International Conference on Mobile Data Management (MDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDM.2018.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

挖掘众包运动轨迹是城市计算中的一个有用工具。城市游客或居民的共同移动模式可以在诸如灾害管理、交通规划和广告投放等应用中得到利用。在推荐系统中,个人行为是一个特别有趣的问题。为了提取个体的访问行为,需要对轨迹进行语义注释。我们描述了如何将层次感兴趣区域(roi)用于语义注释。通过结合多层大小区域,我们可以灵活地检测到密集热点的访问和访问较大区域的轨迹片段,如老城区、公园或岛屿。将注释扩展到公共热点之外,可以获取有关行为的更多信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical Regions of Interest
Mining crowd-sourced movement trajectories is a useful tool in urban computing. Common mobility patterns of the visitors or residents of a city can be exploited in applications such as disaster management, transportation planning and ad placement. In recommendation systems, individual behaviour is of special interest. To extract the visiting behaviour of individuals, the trajectories need to be semantically annotated. We describe how hierarchical regions of interest (ROIs) can be used for semantic annotation. By combining multiple layers of smaller and larger regions we can flexibly detect both visits to dense hotspots and trajectory segments visiting larger areas, such as an old town, a park or an island. Extending the annotation beyond common hotspots captures more information about the behaviour.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FMS: Managing Crowdsourced Indoor Signals with the Fingerprint Management Studio Stochastic Shortest Path Finding in Path-Centric Uncertain Road Networks Concept for Evaluation of Techniques for Trajectory Distance Measures VIPTRA: Visualization and Interactive Processing on Big Trajectory Data DCount - A Probabilistic Algorithm for Accurately Disaggregating Building Occupant Counts into Room Counts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1