{"title":"通过字母重新表示的文本压缩","authors":"Philip M. Long, A. Natsev, J. Vitter","doi":"10.1109/DCC.1997.582003","DOIUrl":null,"url":null,"abstract":"We consider re-representing the alphabet so that a representation of a character reflects its properties as a predictor of future text. This enables us to use an estimator from a restricted class to map contexts to predictions of upcoming characters. We describe an algorithm that uses this idea in conjunction with neural networks. The performance of this implementation is compared to other compression methods, such as UNIX compress, gzip, PPMC, and an alternative neural network approach.","PeriodicalId":403990,"journal":{"name":"Proceedings DCC '97. Data Compression Conference","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Text compression via alphabet re-representation\",\"authors\":\"Philip M. Long, A. Natsev, J. Vitter\",\"doi\":\"10.1109/DCC.1997.582003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider re-representing the alphabet so that a representation of a character reflects its properties as a predictor of future text. This enables us to use an estimator from a restricted class to map contexts to predictions of upcoming characters. We describe an algorithm that uses this idea in conjunction with neural networks. The performance of this implementation is compared to other compression methods, such as UNIX compress, gzip, PPMC, and an alternative neural network approach.\",\"PeriodicalId\":403990,\"journal\":{\"name\":\"Proceedings DCC '97. Data Compression Conference\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings DCC '97. Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.1997.582003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC '97. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1997.582003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We consider re-representing the alphabet so that a representation of a character reflects its properties as a predictor of future text. This enables us to use an estimator from a restricted class to map contexts to predictions of upcoming characters. We describe an algorithm that uses this idea in conjunction with neural networks. The performance of this implementation is compared to other compression methods, such as UNIX compress, gzip, PPMC, and an alternative neural network approach.