Robert Gove, Lucas Cadalzo, Nicholas Leiby, Jedediah M. Singer, Alexander Zaitzeff
{"title":"使用t-SNE的新指南:可选默认值、超参数选择自动化和比较评估","authors":"Robert Gove, Lucas Cadalzo, Nicholas Leiby, Jedediah M. Singer, Alexander Zaitzeff","doi":"10.1016/j.visinf.2022.04.003","DOIUrl":null,"url":null,"abstract":"<div><p>We present new guidelines for choosing hyperparameters for t-SNE and an evaluation comparing these guidelines to current ones. These guidelines include a proposed empirically optimum guideline derived from a t-SNE hyperparameter grid search over a large collection of data sets. We also introduce a new method to featurize data sets using graph-based metrics called scagnostics; we use these features to train a neural network that predicts optimal t-SNE hyperparameters for the respective data set. This neural network has the potential to simplify the use of t-SNE by removing guesswork about which hyperparameters will produce the best embedding. We evaluate and compare our neural network-derived and empirically optimum hyperparameters to several other t-SNE hyperparameter guidelines from the literature on 68 data sets. The hyperparameters predicted by our neural network yield embeddings with similar accuracy as the best current t-SNE guidelines. Using our empirically optimum hyperparameters is simpler than following previously published guidelines but yields more accurate embeddings, in some cases by a statistically significant margin. We find that the useful ranges for t-SNE hyperparameters are narrower and include smaller values than previously reported in the literature. Importantly, we also quantify the potential for future improvements in this area: using data from a grid search of t-SNE hyperparameters we find that an optimal selection method could improve embedding accuracy by up to two percentage points over the methods examined in this paper.</p></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"6 2","pages":"Pages 87-97"},"PeriodicalIF":3.8000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468502X22000201/pdfft?md5=d092541f65d22cc8dfb4e8ef46a1293b&pid=1-s2.0-S2468502X22000201-main.pdf","citationCount":"13","resultStr":"{\"title\":\"New guidance for using t-SNE: Alternative defaults, hyperparameter selection automation, and comparative evaluation\",\"authors\":\"Robert Gove, Lucas Cadalzo, Nicholas Leiby, Jedediah M. Singer, Alexander Zaitzeff\",\"doi\":\"10.1016/j.visinf.2022.04.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present new guidelines for choosing hyperparameters for t-SNE and an evaluation comparing these guidelines to current ones. These guidelines include a proposed empirically optimum guideline derived from a t-SNE hyperparameter grid search over a large collection of data sets. We also introduce a new method to featurize data sets using graph-based metrics called scagnostics; we use these features to train a neural network that predicts optimal t-SNE hyperparameters for the respective data set. This neural network has the potential to simplify the use of t-SNE by removing guesswork about which hyperparameters will produce the best embedding. We evaluate and compare our neural network-derived and empirically optimum hyperparameters to several other t-SNE hyperparameter guidelines from the literature on 68 data sets. The hyperparameters predicted by our neural network yield embeddings with similar accuracy as the best current t-SNE guidelines. Using our empirically optimum hyperparameters is simpler than following previously published guidelines but yields more accurate embeddings, in some cases by a statistically significant margin. We find that the useful ranges for t-SNE hyperparameters are narrower and include smaller values than previously reported in the literature. Importantly, we also quantify the potential for future improvements in this area: using data from a grid search of t-SNE hyperparameters we find that an optimal selection method could improve embedding accuracy by up to two percentage points over the methods examined in this paper.</p></div>\",\"PeriodicalId\":36903,\"journal\":{\"name\":\"Visual Informatics\",\"volume\":\"6 2\",\"pages\":\"Pages 87-97\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468502X22000201/pdfft?md5=d092541f65d22cc8dfb4e8ef46a1293b&pid=1-s2.0-S2468502X22000201-main.pdf\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Informatics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468502X22000201\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X22000201","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
New guidance for using t-SNE: Alternative defaults, hyperparameter selection automation, and comparative evaluation
We present new guidelines for choosing hyperparameters for t-SNE and an evaluation comparing these guidelines to current ones. These guidelines include a proposed empirically optimum guideline derived from a t-SNE hyperparameter grid search over a large collection of data sets. We also introduce a new method to featurize data sets using graph-based metrics called scagnostics; we use these features to train a neural network that predicts optimal t-SNE hyperparameters for the respective data set. This neural network has the potential to simplify the use of t-SNE by removing guesswork about which hyperparameters will produce the best embedding. We evaluate and compare our neural network-derived and empirically optimum hyperparameters to several other t-SNE hyperparameter guidelines from the literature on 68 data sets. The hyperparameters predicted by our neural network yield embeddings with similar accuracy as the best current t-SNE guidelines. Using our empirically optimum hyperparameters is simpler than following previously published guidelines but yields more accurate embeddings, in some cases by a statistically significant margin. We find that the useful ranges for t-SNE hyperparameters are narrower and include smaller values than previously reported in the literature. Importantly, we also quantify the potential for future improvements in this area: using data from a grid search of t-SNE hyperparameters we find that an optimal selection method could improve embedding accuracy by up to two percentage points over the methods examined in this paper.