基于N-Gram IDF的自承认技术债务自动分类

Supatsara Wattanakriengkrai, Napat Srisermphoak, Sahawat Sintoplertchaikul, Morakot Choetkiertikul, Chaiyong Ragkhitwetsagul, T. Sunetnanta, Hideaki Hata, Ken-ichi Matsumoto
{"title":"基于N-Gram IDF的自承认技术债务自动分类","authors":"Supatsara Wattanakriengkrai, Napat Srisermphoak, Sahawat Sintoplertchaikul, Morakot Choetkiertikul, Chaiyong Ragkhitwetsagul, T. Sunetnanta, Hideaki Hata, Ken-ichi Matsumoto","doi":"10.1109/APSEC48747.2019.00050","DOIUrl":null,"url":null,"abstract":"Technical Debt (TD) introduces a quality problem and increases maintenance cost since it may require improvements in the future. Several studies show that it is possible to automatically detect TD from source code comments that developers intentionally created, so-called self-admitted technical debt (SATD). Those studies proposed to use binary classification technique to predict whether a comment shows SATD. However, SATD has different types (e.g. design SATD and requirement SATD). In this paper, we therefore propose an approach using N-gram Inverse Document Frequency (IDF) and employ a multi-class classification technique to build a model that can identify different types of SATD. From the empirical evaluation on 10 open-source projects, our approach outperforms alternative methods (e.g. using BOW and TF-IDF). Our approach also improves the prediction performance over the baseline benchmark by 33%.","PeriodicalId":325642,"journal":{"name":"2019 26th Asia-Pacific Software Engineering Conference (APSEC)","volume":"411 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Automatic Classifying Self-Admitted Technical Debt Using N-Gram IDF\",\"authors\":\"Supatsara Wattanakriengkrai, Napat Srisermphoak, Sahawat Sintoplertchaikul, Morakot Choetkiertikul, Chaiyong Ragkhitwetsagul, T. Sunetnanta, Hideaki Hata, Ken-ichi Matsumoto\",\"doi\":\"10.1109/APSEC48747.2019.00050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Technical Debt (TD) introduces a quality problem and increases maintenance cost since it may require improvements in the future. Several studies show that it is possible to automatically detect TD from source code comments that developers intentionally created, so-called self-admitted technical debt (SATD). Those studies proposed to use binary classification technique to predict whether a comment shows SATD. However, SATD has different types (e.g. design SATD and requirement SATD). In this paper, we therefore propose an approach using N-gram Inverse Document Frequency (IDF) and employ a multi-class classification technique to build a model that can identify different types of SATD. From the empirical evaluation on 10 open-source projects, our approach outperforms alternative methods (e.g. using BOW and TF-IDF). Our approach also improves the prediction performance over the baseline benchmark by 33%.\",\"PeriodicalId\":325642,\"journal\":{\"name\":\"2019 26th Asia-Pacific Software Engineering Conference (APSEC)\",\"volume\":\"411 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 26th Asia-Pacific Software Engineering Conference (APSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSEC48747.2019.00050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 26th Asia-Pacific Software Engineering Conference (APSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSEC48747.2019.00050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

技术债务(TD)引入了质量问题并增加了维护成本,因为它可能需要在未来进行改进。一些研究表明,从开发人员有意创建的源代码注释中自动检测TD是可能的,即所谓的自我承认的技术债务(SATD)。这些研究提出使用二元分类技术来预测评论是否存在SATD。然而,SATD有不同的类型(例如,设计SATD和需求SATD)。因此,在本文中,我们提出了一种使用N-gram逆文档频率(IDF)的方法,并采用多类分类技术来构建一个可以识别不同类型SATD的模型。从对10个开源项目的实证评估来看,我们的方法优于其他方法(例如使用BOW和TF-IDF)。我们的方法还将基准基准的预测性能提高了33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Classifying Self-Admitted Technical Debt Using N-Gram IDF
Technical Debt (TD) introduces a quality problem and increases maintenance cost since it may require improvements in the future. Several studies show that it is possible to automatically detect TD from source code comments that developers intentionally created, so-called self-admitted technical debt (SATD). Those studies proposed to use binary classification technique to predict whether a comment shows SATD. However, SATD has different types (e.g. design SATD and requirement SATD). In this paper, we therefore propose an approach using N-gram Inverse Document Frequency (IDF) and employ a multi-class classification technique to build a model that can identify different types of SATD. From the empirical evaluation on 10 open-source projects, our approach outperforms alternative methods (e.g. using BOW and TF-IDF). Our approach also improves the prediction performance over the baseline benchmark by 33%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Duplicate Questions in Stack Overflow via Deep Learning Approaches An Algebraic Approach to Modeling and Verifying Policy-Driven Smart Devices in IoT Systems Integrating Static Program Analysis Tools for Verifying Cautions of Microcontroller How Compact Will My System Be? A Fully-Automated Way to Calculate LoC Reduced by Clone Refactoring Neural Comment Generation for Source Code with Auxiliary Code Classification Task
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1