我们是人类,还是用户?自然语言处理在以人为中心的新闻推荐中的作用,将用户推送到不同的内容

Myrthe Reuver, Nicolas Mattis, M. Sax, S. Verberne, N. Tintarev, N. Helberger, Judith Moeller, Sanne Vrijenhoek, Antske Fokkens, Wouter van Atteveldt
{"title":"我们是人类,还是用户?自然语言处理在以人为中心的新闻推荐中的作用,将用户推送到不同的内容","authors":"Myrthe Reuver, Nicolas Mattis, M. Sax, S. Verberne, N. Tintarev, N. Helberger, Judith Moeller, Sanne Vrijenhoek, Antske Fokkens, Wouter van Atteveldt","doi":"10.18653/v1/2021.nlp4posimpact-1.6","DOIUrl":null,"url":null,"abstract":"In this position paper, we present a research agenda and ideas for facilitating exposure to diverse viewpoints in news recommendation. Recommending news from diverse viewpoints is important to prevent potential filter bubble effects in news consumption, and stimulate a healthy democratic debate.To account for the complexity that is inherent to humans as citizens in a democracy, we anticipate (among others) individual-level differences in acceptance of diversity. We connect this idea to techniques in Natural Language Processing, where distributional language models would allow us to place different users and news articles in a multidimensional space based on semantic content, where diversity is operationalized as distance and variance. In this way, we can model individual “latitudes of diversity” for different users, and thus personalize viewpoint diversity in support of a healthy public debate. In addition, we identify technical, ethical and conceptual issues related to our presented ideas. Our investigation describes how NLP can play a central role in diversifying news recommendations.","PeriodicalId":133017,"journal":{"name":"Proceedings of the 1st Workshop on NLP for Positive Impact","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Are we human, or are we users? The role of natural language processing in human-centric news recommenders that nudge users to diverse content\",\"authors\":\"Myrthe Reuver, Nicolas Mattis, M. Sax, S. Verberne, N. Tintarev, N. Helberger, Judith Moeller, Sanne Vrijenhoek, Antske Fokkens, Wouter van Atteveldt\",\"doi\":\"10.18653/v1/2021.nlp4posimpact-1.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this position paper, we present a research agenda and ideas for facilitating exposure to diverse viewpoints in news recommendation. Recommending news from diverse viewpoints is important to prevent potential filter bubble effects in news consumption, and stimulate a healthy democratic debate.To account for the complexity that is inherent to humans as citizens in a democracy, we anticipate (among others) individual-level differences in acceptance of diversity. We connect this idea to techniques in Natural Language Processing, where distributional language models would allow us to place different users and news articles in a multidimensional space based on semantic content, where diversity is operationalized as distance and variance. In this way, we can model individual “latitudes of diversity” for different users, and thus personalize viewpoint diversity in support of a healthy public debate. In addition, we identify technical, ethical and conceptual issues related to our presented ideas. Our investigation describes how NLP can play a central role in diversifying news recommendations.\",\"PeriodicalId\":133017,\"journal\":{\"name\":\"Proceedings of the 1st Workshop on NLP for Positive Impact\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st Workshop on NLP for Positive Impact\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2021.nlp4posimpact-1.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st Workshop on NLP for Positive Impact","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.nlp4posimpact-1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在这个立场文件中,我们提出了一个研究议程和想法,以促进新闻推荐中不同观点的暴露。从不同的角度推荐新闻,对于防止新闻消费中潜在的过滤泡沫效应,以及激发健康的民主辩论非常重要。为了解释作为民主国家公民的人类所固有的复杂性,我们预计(除其他外)个体在接受多样性方面的差异。我们将这个想法与自然语言处理中的技术联系起来,其中分布式语言模型将允许我们将不同的用户和新闻文章放置在基于语义内容的多维空间中,其中多样性被操作为距离和方差。通过这种方式,我们可以为不同的用户建立个体“多样性纬度”模型,从而个性化观点多样性,以支持健康的公共辩论。此外,我们还确定了与我们提出的想法相关的技术、伦理和概念问题。我们的调查描述了NLP如何在多样化的新闻推荐中发挥核心作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Are we human, or are we users? The role of natural language processing in human-centric news recommenders that nudge users to diverse content
In this position paper, we present a research agenda and ideas for facilitating exposure to diverse viewpoints in news recommendation. Recommending news from diverse viewpoints is important to prevent potential filter bubble effects in news consumption, and stimulate a healthy democratic debate.To account for the complexity that is inherent to humans as citizens in a democracy, we anticipate (among others) individual-level differences in acceptance of diversity. We connect this idea to techniques in Natural Language Processing, where distributional language models would allow us to place different users and news articles in a multidimensional space based on semantic content, where diversity is operationalized as distance and variance. In this way, we can model individual “latitudes of diversity” for different users, and thus personalize viewpoint diversity in support of a healthy public debate. In addition, we identify technical, ethical and conceptual issues related to our presented ideas. Our investigation describes how NLP can play a central role in diversifying news recommendations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Speech-enabled Fixed-phrase Translator for Healthcare Accessibility Guiding Principles for Participatory Design-inspired Natural Language Processing The Climate Change Debate and Natural Language Processing Cartography of Natural Language Processing for Social Good (NLP4SG): Searching for Definitions, Statistics and White Spots Theano: A Greek-speaking conversational agent for COVID-19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1