{"title":"基于自适应阈值分割的细胞破坏活性验证","authors":"P. Sankaran, V. Asari","doi":"10.1109/AIPR.2006.9","DOIUrl":null,"url":null,"abstract":"An adaptive thresholding method used to distinguish cell boundaries in a given image is presented in this paper. A preprocessing step involves low pass filtering of the image to remove high frequency noise seen in the image. This image is now adaptively thresholded to create a binary image. The bright regions are further analyzed based on their geometrical descriptors such as area and form factor to classify them as cell or non-cell regions. Two sets of images, pulsed and non-pulsed, are available, which can be compared to determine the efficiency of the pulsing. Results for automatic segmentation are compared with those of manually obtained values to determine its efficiency.","PeriodicalId":375571,"journal":{"name":"35th IEEE Applied Imagery and Pattern Recognition Workshop (AIPR'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Adaptive Thresholding Based Cell Segmentation for Cell-Destruction Activity Verification\",\"authors\":\"P. Sankaran, V. Asari\",\"doi\":\"10.1109/AIPR.2006.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An adaptive thresholding method used to distinguish cell boundaries in a given image is presented in this paper. A preprocessing step involves low pass filtering of the image to remove high frequency noise seen in the image. This image is now adaptively thresholded to create a binary image. The bright regions are further analyzed based on their geometrical descriptors such as area and form factor to classify them as cell or non-cell regions. Two sets of images, pulsed and non-pulsed, are available, which can be compared to determine the efficiency of the pulsing. Results for automatic segmentation are compared with those of manually obtained values to determine its efficiency.\",\"PeriodicalId\":375571,\"journal\":{\"name\":\"35th IEEE Applied Imagery and Pattern Recognition Workshop (AIPR'06)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"35th IEEE Applied Imagery and Pattern Recognition Workshop (AIPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2006.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"35th IEEE Applied Imagery and Pattern Recognition Workshop (AIPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2006.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive Thresholding Based Cell Segmentation for Cell-Destruction Activity Verification
An adaptive thresholding method used to distinguish cell boundaries in a given image is presented in this paper. A preprocessing step involves low pass filtering of the image to remove high frequency noise seen in the image. This image is now adaptively thresholded to create a binary image. The bright regions are further analyzed based on their geometrical descriptors such as area and form factor to classify them as cell or non-cell regions. Two sets of images, pulsed and non-pulsed, are available, which can be compared to determine the efficiency of the pulsing. Results for automatic segmentation are compared with those of manually obtained values to determine its efficiency.