基于子空间投影的有效视频事件检测

Jialie Shen, D. Tao, Xuelong Li
{"title":"基于子空间投影的有效视频事件检测","authors":"Jialie Shen, D. Tao, Xuelong Li","doi":"10.1109/MMSP.2008.4665043","DOIUrl":null,"url":null,"abstract":"This paper describes a new video event detection framework based on subspace selection technique. With the approach, feature vectors presenting different kinds of video information can be easily projected from different modalities onto an unified subspace, on which recognition process can be performed. The approach is capable of discriminating different classes and preserving the intra-modal geometry of samples within an identical class. Distinguished from the existing multi-modal detection methods, the new system works well when some modalities are not available. Experimental results based on soccer video and TRECVID news video collections demonstrate the effectiveness, efficiency and robustness of the proposed method for individual recognition tasks in comparison to the existing approaches.","PeriodicalId":402287,"journal":{"name":"2008 IEEE 10th Workshop on Multimedia Signal Processing","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective video event detection via subspace projection\",\"authors\":\"Jialie Shen, D. Tao, Xuelong Li\",\"doi\":\"10.1109/MMSP.2008.4665043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a new video event detection framework based on subspace selection technique. With the approach, feature vectors presenting different kinds of video information can be easily projected from different modalities onto an unified subspace, on which recognition process can be performed. The approach is capable of discriminating different classes and preserving the intra-modal geometry of samples within an identical class. Distinguished from the existing multi-modal detection methods, the new system works well when some modalities are not available. Experimental results based on soccer video and TRECVID news video collections demonstrate the effectiveness, efficiency and robustness of the proposed method for individual recognition tasks in comparison to the existing approaches.\",\"PeriodicalId\":402287,\"journal\":{\"name\":\"2008 IEEE 10th Workshop on Multimedia Signal Processing\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE 10th Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2008.4665043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 10th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2008.4665043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的基于子空间选择技术的视频事件检测框架。利用该方法,可以很容易地将表示不同类型视频信息的特征向量从不同的模态投射到统一的子空间中,从而可以在该子空间上进行识别。该方法能够区分不同的类别,并保留同一类别内样本的模态几何形状。与现有的多模态检测方法不同,新系统在某些模态不可用的情况下也能很好地工作。基于足球视频和TRECVID新闻视频集的实验结果表明,与现有方法相比,该方法在单个识别任务中具有有效性、高效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effective video event detection via subspace projection
This paper describes a new video event detection framework based on subspace selection technique. With the approach, feature vectors presenting different kinds of video information can be easily projected from different modalities onto an unified subspace, on which recognition process can be performed. The approach is capable of discriminating different classes and preserving the intra-modal geometry of samples within an identical class. Distinguished from the existing multi-modal detection methods, the new system works well when some modalities are not available. Experimental results based on soccer video and TRECVID news video collections demonstrate the effectiveness, efficiency and robustness of the proposed method for individual recognition tasks in comparison to the existing approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting doubly compressed JPEG images by using Mode Based First Digit Features Music tracking in audio streams from movies 3-D mesh representation and retrieval using Isomap manifold Adaptive wavelet coding of the depth map for stereoscopic view synthesis Fast encoding algorithms for video coding with adaptive interpolation filters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1