从30像素预测软生物特征属性:近红外眼部图像的案例研究

Denton Bobeldyk, A. Ross
{"title":"从30像素预测软生物特征属性:近红外眼部图像的案例研究","authors":"Denton Bobeldyk, A. Ross","doi":"10.1109/WACVW.2019.00024","DOIUrl":null,"url":null,"abstract":"In this work, we investigate the possibility of extracting soft biometric attributes, viz., gender, race and eye color, from down-sampled near-infrared ocular images. In particular, we evaluate the possibility of deducing gender, race and eye color from ocular images as small as 56 pixels. Our preliminary analysis yields the surprising result that gender, race and eye color cues are still available in such low-resolution near-infrared images. This research bolsters the previously made assertion in the literature that certain soft biometric attributes can be deduced from poor quality biometric data.","PeriodicalId":254512,"journal":{"name":"2019 IEEE Winter Applications of Computer Vision Workshops (WACVW)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Predicting Soft Biometric Attributes from 30 Pixels: A Case Study in NIR Ocular Images\",\"authors\":\"Denton Bobeldyk, A. Ross\",\"doi\":\"10.1109/WACVW.2019.00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we investigate the possibility of extracting soft biometric attributes, viz., gender, race and eye color, from down-sampled near-infrared ocular images. In particular, we evaluate the possibility of deducing gender, race and eye color from ocular images as small as 56 pixels. Our preliminary analysis yields the surprising result that gender, race and eye color cues are still available in such low-resolution near-infrared images. This research bolsters the previously made assertion in the literature that certain soft biometric attributes can be deduced from poor quality biometric data.\",\"PeriodicalId\":254512,\"journal\":{\"name\":\"2019 IEEE Winter Applications of Computer Vision Workshops (WACVW)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Winter Applications of Computer Vision Workshops (WACVW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACVW.2019.00024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Applications of Computer Vision Workshops (WACVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACVW.2019.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在这项工作中,我们研究了从下采样的近红外眼部图像中提取软生物特征属性(即性别、种族和眼睛颜色)的可能性。特别是,我们评估了从小到56像素的眼部图像推断性别、种族和眼睛颜色的可能性。我们的初步分析得出了一个令人惊讶的结果:在这种低分辨率的近红外图像中,仍然可以找到性别、种族和眼睛颜色的线索。这项研究支持了先前在文献中提出的断言,即某些软生物特征属性可以从质量较差的生物特征数据中推断出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Soft Biometric Attributes from 30 Pixels: A Case Study in NIR Ocular Images
In this work, we investigate the possibility of extracting soft biometric attributes, viz., gender, race and eye color, from down-sampled near-infrared ocular images. In particular, we evaluate the possibility of deducing gender, race and eye color from ocular images as small as 56 pixels. Our preliminary analysis yields the surprising result that gender, race and eye color cues are still available in such low-resolution near-infrared images. This research bolsters the previously made assertion in the literature that certain soft biometric attributes can be deduced from poor quality biometric data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Can Liveness Be Automatically Detected from Latent Fingerprints? Novel Activities Detection Algorithm in Extended Videos Exploring Automatic Face Recognition on Match Performance and Gender Bias for Children MFC Datasets: Large-Scale Benchmark Datasets for Media Forensic Challenge Evaluation Sponsors and Corporate Donors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1