基于位置服务的隐私保护接近检测框架

Chen Yang, Zhen Jia, Shundong Li
{"title":"基于位置服务的隐私保护接近检测框架","authors":"Chen Yang, Zhen Jia, Shundong Li","doi":"10.1109/NaNA53684.2021.00025","DOIUrl":null,"url":null,"abstract":"With the popularization of mobile communication and sensing equipment, as well as the rapid development of location-aware technology and wireless communication technology, LBSs(Location-based services) bring convenience to people’s lives and enable people to arrange activities more efficiently and reasonably. It can provide more flexible LBS proximity detection query, which has attracted widespread attention in recent years. However, the development of proximity detection query still faces many severe challenges including query information privacy. For example, when users want to ensure their location privacy and data security, they can get more secure location-based services. In this article, we propose an efficient and privacy-protecting proximity detection framework based on location services: PD(Proximity Detection). Through PD, users can query the range of arbitrary polygons and obtain accurate LBS results. Specifically, based on homomorphic encryption technology, an efficient PRQ(polygon range query) algorithm is constructed. With the help of PRQ, PD, you can obtain accurate polygon range query results through the encryption request and the services provided by the LAS(LBS Agent Server) and the CS(Cloud Server). In addition, the query privacy of the queryer and the information of the data provider are protected. The correctness proof and performance analysis show that the scheme is safe and feasible. Therefore, our scheme is suitable for many practical applications.","PeriodicalId":414672,"journal":{"name":"2021 International Conference on Networking and Network Applications (NaNA)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Privacy-Preserving Proximity Detection Framework for Location-Based Services\",\"authors\":\"Chen Yang, Zhen Jia, Shundong Li\",\"doi\":\"10.1109/NaNA53684.2021.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the popularization of mobile communication and sensing equipment, as well as the rapid development of location-aware technology and wireless communication technology, LBSs(Location-based services) bring convenience to people’s lives and enable people to arrange activities more efficiently and reasonably. It can provide more flexible LBS proximity detection query, which has attracted widespread attention in recent years. However, the development of proximity detection query still faces many severe challenges including query information privacy. For example, when users want to ensure their location privacy and data security, they can get more secure location-based services. In this article, we propose an efficient and privacy-protecting proximity detection framework based on location services: PD(Proximity Detection). Through PD, users can query the range of arbitrary polygons and obtain accurate LBS results. Specifically, based on homomorphic encryption technology, an efficient PRQ(polygon range query) algorithm is constructed. With the help of PRQ, PD, you can obtain accurate polygon range query results through the encryption request and the services provided by the LAS(LBS Agent Server) and the CS(Cloud Server). In addition, the query privacy of the queryer and the information of the data provider are protected. The correctness proof and performance analysis show that the scheme is safe and feasible. Therefore, our scheme is suitable for many practical applications.\",\"PeriodicalId\":414672,\"journal\":{\"name\":\"2021 International Conference on Networking and Network Applications (NaNA)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Networking and Network Applications (NaNA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NaNA53684.2021.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Networking and Network Applications (NaNA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NaNA53684.2021.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着移动通信和传感设备的普及,以及位置感知技术和无线通信技术的快速发展,lbs (Location-based services)为人们的生活带来了便利,使人们能够更高效、合理地安排活动。它可以提供更灵活的LBS接近检测查询,近年来受到广泛关注。然而,接近检测查询的发展仍然面临着查询信息隐私等诸多严峻挑战。例如,当用户希望确保自己的位置隐私和数据安全时,他们可以获得更安全的基于位置的服务。在本文中,我们提出了一种高效且保护隐私的基于位置服务的接近检测框架:PD(proximity detection)。通过PD,用户可以查询任意多边形的范围,获得准确的LBS结果。具体而言,基于同态加密技术,构造了一种高效的多边形范围查询(PRQ)算法。在PRQ、PD的帮助下,通过加密请求和LAS(LBS Agent Server)、CS(Cloud Server)提供的服务,可以获得准确的多边形范围查询结果。此外,还保护了查询者的查询隐私和数据提供者的信息。正确性证明和性能分析表明该方案是安全可行的。因此,我们的方案适合于许多实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Privacy-Preserving Proximity Detection Framework for Location-Based Services
With the popularization of mobile communication and sensing equipment, as well as the rapid development of location-aware technology and wireless communication technology, LBSs(Location-based services) bring convenience to people’s lives and enable people to arrange activities more efficiently and reasonably. It can provide more flexible LBS proximity detection query, which has attracted widespread attention in recent years. However, the development of proximity detection query still faces many severe challenges including query information privacy. For example, when users want to ensure their location privacy and data security, they can get more secure location-based services. In this article, we propose an efficient and privacy-protecting proximity detection framework based on location services: PD(Proximity Detection). Through PD, users can query the range of arbitrary polygons and obtain accurate LBS results. Specifically, based on homomorphic encryption technology, an efficient PRQ(polygon range query) algorithm is constructed. With the help of PRQ, PD, you can obtain accurate polygon range query results through the encryption request and the services provided by the LAS(LBS Agent Server) and the CS(Cloud Server). In addition, the query privacy of the queryer and the information of the data provider are protected. The correctness proof and performance analysis show that the scheme is safe and feasible. Therefore, our scheme is suitable for many practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Covert Communication in D2D Underlaying Cellular Network Online Scheduling of Machine Learning Jobs in Edge-Cloud Networks Dual attention mechanism object tracking algorithm based on Fully-convolutional Siamese network Fatigue Detection Technology for Online Learning The Nearest Neighbor Algorithm for Balanced and Connected k-Center Problem under Modular Distance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1