使用命名实体识别技术自动区分真假新闻

Bo Xu, C. Tsai
{"title":"使用命名实体识别技术自动区分真假新闻","authors":"Bo Xu, C. Tsai","doi":"10.1145/3430199.3430220","DOIUrl":null,"url":null,"abstract":"Today, the increasing ease of publishing information online combined with a gradual shift of paradigm from consuming news via conventional media to non-conventional media calls for a computational and automatic approach to the identification of an article's legitimacy. In this study, we propose an approach for cross-domain fake news detection focusing on the identification of legitimate content from a pool of articles that are of varying degrees of legitimacy. We present a model as a proof of concept as well as data gathered from evaluating the model on Fake-News AMT, a dataset released for cross-domain fake news detection. The results of our model are then compared against a baseline model which has served as the benchmark for the dataset. We find all results in support of our hypothesis. Our proof-of-concept model has also outperformed the benchmark in the domains Technology and Entertainment as well as when it was run on the whole dataset at once.","PeriodicalId":371055,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic Differentiation Between Legitimate and Fake News Using Named Entity Recognition\",\"authors\":\"Bo Xu, C. Tsai\",\"doi\":\"10.1145/3430199.3430220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, the increasing ease of publishing information online combined with a gradual shift of paradigm from consuming news via conventional media to non-conventional media calls for a computational and automatic approach to the identification of an article's legitimacy. In this study, we propose an approach for cross-domain fake news detection focusing on the identification of legitimate content from a pool of articles that are of varying degrees of legitimacy. We present a model as a proof of concept as well as data gathered from evaluating the model on Fake-News AMT, a dataset released for cross-domain fake news detection. The results of our model are then compared against a baseline model which has served as the benchmark for the dataset. We find all results in support of our hypothesis. Our proof-of-concept model has also outperformed the benchmark in the domains Technology and Entertainment as well as when it was run on the whole dataset at once.\",\"PeriodicalId\":371055,\"journal\":{\"name\":\"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3430199.3430220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3430199.3430220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

今天,在线发布信息越来越容易,再加上从传统媒体到非传统媒体消费新闻的范式逐渐转变,需要一种计算和自动的方法来识别文章的合法性。在本研究中,我们提出了一种跨域假新闻检测方法,专注于从具有不同程度合法性的文章池中识别合法内容。我们提出了一个模型作为概念的证明,以及在fake - news AMT(一个用于跨域假新闻检测的数据集)上评估该模型所收集的数据。然后将我们模型的结果与作为数据集基准的基线模型进行比较。我们发现所有的结果都支持我们的假设。我们的概念验证模型在技术和娱乐领域以及在整个数据集上同时运行时也优于基准测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Differentiation Between Legitimate and Fake News Using Named Entity Recognition
Today, the increasing ease of publishing information online combined with a gradual shift of paradigm from consuming news via conventional media to non-conventional media calls for a computational and automatic approach to the identification of an article's legitimacy. In this study, we propose an approach for cross-domain fake news detection focusing on the identification of legitimate content from a pool of articles that are of varying degrees of legitimacy. We present a model as a proof of concept as well as data gathered from evaluating the model on Fake-News AMT, a dataset released for cross-domain fake news detection. The results of our model are then compared against a baseline model which has served as the benchmark for the dataset. We find all results in support of our hypothesis. Our proof-of-concept model has also outperformed the benchmark in the domains Technology and Entertainment as well as when it was run on the whole dataset at once.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D Modeling of Riverbeds Based on NURBS Algorithm Multi-view Learning for 3D LGE-MRI Left Atrial Cavity Segmentation Detection of Key Structure of Auroral Images Based on Weakly Supervised Learning People Counting Based on Multi-scale Region Adaptive Segmentation and Depth Neural Network A Survey of Research on Image Data Sources Forensics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1