贝叶斯离线分割在多载波GPS信号融合中的应用

S. Boutoille, S. Reboul, M. Benjelloun
{"title":"贝叶斯离线分割在多载波GPS信号融合中的应用","authors":"S. Boutoille, S. Reboul, M. Benjelloun","doi":"10.1109/ICIF.2007.4408057","DOIUrl":null,"url":null,"abstract":"This paper presents a Bayesian off-line fusion segmentation method, applied to the code tracking in a multi-carrier GPS receiver. The tracking is realized with discriminator values obtained on the different carrier frequencies. We suppose that the evolution of the pseudo-ranges satellites-receiver is piecewise linear. We propose a Bayesian method for the fusion of change detection models in the discriminators evolution. In this context, we construct a penalized contrast function to estimate the model parameters. The contrast function is deduced from log-likelihood of the parametric distribution that models the discriminators statistic evolution. We deduced the penalty term from the prior law of change instants. It is composed of parameters that guide the number of changes and of parameters that will bring prior information on the ionospheric delays between the GPS signals on the different carrier frequencies. We show on synthetic and real data the feasibility and the contribution of our method.","PeriodicalId":298941,"journal":{"name":"2007 10th International Conference on Information Fusion","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian off-line segmentation applied to multi-carrier GPS signals fusion\",\"authors\":\"S. Boutoille, S. Reboul, M. Benjelloun\",\"doi\":\"10.1109/ICIF.2007.4408057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a Bayesian off-line fusion segmentation method, applied to the code tracking in a multi-carrier GPS receiver. The tracking is realized with discriminator values obtained on the different carrier frequencies. We suppose that the evolution of the pseudo-ranges satellites-receiver is piecewise linear. We propose a Bayesian method for the fusion of change detection models in the discriminators evolution. In this context, we construct a penalized contrast function to estimate the model parameters. The contrast function is deduced from log-likelihood of the parametric distribution that models the discriminators statistic evolution. We deduced the penalty term from the prior law of change instants. It is composed of parameters that guide the number of changes and of parameters that will bring prior information on the ionospheric delays between the GPS signals on the different carrier frequencies. We show on synthetic and real data the feasibility and the contribution of our method.\",\"PeriodicalId\":298941,\"journal\":{\"name\":\"2007 10th International Conference on Information Fusion\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 10th International Conference on Information Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2007.4408057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 10th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2007.4408057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种贝叶斯离线融合分割方法,并将其应用于多载波GPS接收机的代码跟踪。利用在不同载波频率上获得的鉴别器值实现跟踪。我们假设伪距离卫星接收机的演化是分段线性的。我们提出了一种贝叶斯方法来融合鉴别器进化中的变化检测模型。在这种情况下,我们构造了一个惩罚对比函数来估计模型参数。对比函数是由参数分布的对数似然推导出来的,该分布对鉴别器的统计演化进行了建模。我们从变化瞬间的先验规律推导出惩罚项。它由指导变化次数的参数和将带来不同载波频率上GPS信号之间电离层延迟的先验信息的参数组成。综合数据和实际数据表明了该方法的可行性和贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian off-line segmentation applied to multi-carrier GPS signals fusion
This paper presents a Bayesian off-line fusion segmentation method, applied to the code tracking in a multi-carrier GPS receiver. The tracking is realized with discriminator values obtained on the different carrier frequencies. We suppose that the evolution of the pseudo-ranges satellites-receiver is piecewise linear. We propose a Bayesian method for the fusion of change detection models in the discriminators evolution. In this context, we construct a penalized contrast function to estimate the model parameters. The contrast function is deduced from log-likelihood of the parametric distribution that models the discriminators statistic evolution. We deduced the penalty term from the prior law of change instants. It is composed of parameters that guide the number of changes and of parameters that will bring prior information on the ionospheric delays between the GPS signals on the different carrier frequencies. We show on synthetic and real data the feasibility and the contribution of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semi-autonomous reference data generation for perception performance evaluation Track association and fusion with heterogeneous local trackers Distributed detection of a nuclear radioactive source using fusion of correlated decisions Distributed data fusion algorithms for tracking a maneuvering target Multi agent systems for flexible and robust Bayesian information fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1