现代gpgpu上模板代码的性能极限研究

Ilya S. Pershin, V. Levchenko, A. Perepelkina
{"title":"现代gpgpu上模板代码的性能极限研究","authors":"Ilya S. Pershin, V. Levchenko, A. Perepelkina","doi":"10.14529/JSFI190207","DOIUrl":null,"url":null,"abstract":"We study the performance limits of different algorithmic approaches to the implementation of a sample problem of wave equation solution with a cross stencil scheme. With this, we aim to find the highest limit of the achievable performance efficiency for stencil computing. To estimate the limits, we use a quantitative Roofline model to make a thorough analysis of the performance bottlenecks and develop the model further to account for the latency of different levels of GPU memory.  These estimates provide an incentive to use spatial and temporal blocking algorithms. Thus, we study stepwise, domain decomposition, and domain decomposition with halo algorithms in that order. The knowledge of the limit incites the motivation to optimize the implementation. This led to the analysis of the block synchronization methods in CUDA, which is also provided in the text.  After all optimizations, we have achieved 90% of the peak performance, which amounts to more than 1 trillion cell updates per second on one consumer level GPU device.","PeriodicalId":338883,"journal":{"name":"Supercomput. Front. Innov.","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Performance Limits Study of Stencil Codes on Modern GPGPUs\",\"authors\":\"Ilya S. Pershin, V. Levchenko, A. Perepelkina\",\"doi\":\"10.14529/JSFI190207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the performance limits of different algorithmic approaches to the implementation of a sample problem of wave equation solution with a cross stencil scheme. With this, we aim to find the highest limit of the achievable performance efficiency for stencil computing. To estimate the limits, we use a quantitative Roofline model to make a thorough analysis of the performance bottlenecks and develop the model further to account for the latency of different levels of GPU memory.  These estimates provide an incentive to use spatial and temporal blocking algorithms. Thus, we study stepwise, domain decomposition, and domain decomposition with halo algorithms in that order. The knowledge of the limit incites the motivation to optimize the implementation. This led to the analysis of the block synchronization methods in CUDA, which is also provided in the text.  After all optimizations, we have achieved 90% of the peak performance, which amounts to more than 1 trillion cell updates per second on one consumer level GPU device.\",\"PeriodicalId\":338883,\"journal\":{\"name\":\"Supercomput. Front. Innov.\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Supercomput. Front. Innov.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14529/JSFI190207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supercomput. Front. Innov.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14529/JSFI190207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们研究了不同算法方法在求解一个具有交叉模板格式的波动方程解样题中的性能限制。因此,我们的目标是找到可实现的模板计算性能效率的最高极限。为了估计极限,我们使用定量的rooline模型对性能瓶颈进行彻底分析,并进一步开发模型以考虑不同级别GPU内存的延迟。这些估计提供了使用空间和时间阻塞算法的动机。因此,我们依次研究逐步分解、区域分解和晕轮算法的区域分解。对极限的了解激发了优化实现的动机。这导致了对CUDA中的块同步方法的分析,这也在文本中提供。在所有优化之后,我们已经达到了90%的峰值性能,这相当于在一个消费级GPU设备上每秒更新超过1万亿个单元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Limits Study of Stencil Codes on Modern GPGPUs
We study the performance limits of different algorithmic approaches to the implementation of a sample problem of wave equation solution with a cross stencil scheme. With this, we aim to find the highest limit of the achievable performance efficiency for stencil computing. To estimate the limits, we use a quantitative Roofline model to make a thorough analysis of the performance bottlenecks and develop the model further to account for the latency of different levels of GPU memory.  These estimates provide an incentive to use spatial and temporal blocking algorithms. Thus, we study stepwise, domain decomposition, and domain decomposition with halo algorithms in that order. The knowledge of the limit incites the motivation to optimize the implementation. This led to the analysis of the block synchronization methods in CUDA, which is also provided in the text.  After all optimizations, we have achieved 90% of the peak performance, which amounts to more than 1 trillion cell updates per second on one consumer level GPU device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Supercomputer-Based Modeling System for Short-Term Prediction of Urban Surface Air Quality River Routing in the INM RAS-MSU Land Surface Model: Numerical Scheme and Parallel Implementation on Hybrid Supercomputers Data Assimilation by Neural Network for Ocean Circulation: Parallel Implementation Multistage Iterative Method to Tackle Inverse Problems of Wave Tomography Machine Learning Approaches to Extreme Weather Events Forecast in Urban Areas: Challenges and Initial Results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1